Fluxional halogen bonds in linear complexes of tetrafluorodiiodobenzene with dinitrobenzene
Cai-Yue Gao
Institute of Molecular Science, Shanxi University, Taiyuan, China
Search for more papers by this authorBin-Bin Pei
Institute of Molecular Science, Shanxi University, Taiyuan, China
Search for more papers by this authorCorresponding Author
Si-Dian Li
Institute of Molecular Science, Shanxi University, Taiyuan, China
Correspondence
Si-Dian Li, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
Email: [email protected]
Search for more papers by this authorCai-Yue Gao
Institute of Molecular Science, Shanxi University, Taiyuan, China
Search for more papers by this authorBin-Bin Pei
Institute of Molecular Science, Shanxi University, Taiyuan, China
Search for more papers by this authorCorresponding Author
Si-Dian Li
Institute of Molecular Science, Shanxi University, Taiyuan, China
Correspondence
Si-Dian Li, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
Email: [email protected]
Search for more papers by this authorAbstract
The fluxional nature of halogen bonds (XBs) in small molecular clusters, supramolecules, and molecular crystals has received considerable attention in recent years. In this work, based on extensive density-functional theory calculations and detailed electrostatic potential (ESP), natural bonding orbital (NBO), non-covalent interactions-reduced density gradient (NCI-RDG), and quantum theory of atoms in molecules (QTAIM) analyses, we unveil the existence of fluxional halogen bonds (FXBs) in a series of linear (IC6F4I)m(OONC6H4NOO)n (m + n = 2–5) complexes of tetrafluorodiiodobenzene with dinitrobenzene which appear to be similar to the previously reported fluxional hydrogen bonds (FHBs) in small water clusters (H2O)n (n = 2–6). The obtained fluxional mechanisms involve one FXB in the systems which fluctuates reversibly between two linear CI···O XBs in the ground states (GS and GS') via a bifurcated CI O2N van der Waals interaction in the transition state (TS). The cohesive energies (Ecoh) of these complexes with up to four XBs exhibit an almost perfect linear relationship with the numbers of XBs in the systems, with the average calculated halogen bond energy of Ecoh/XB = 3.48 kcal·mol−1 in the ground states which appears to be about 55% of the average calculated hydrogen bond energy (Ecoh/HB = 6.28 kcal·mol−1) in small water clusters.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
the data is available according to JCC policies.
Supporting Information
Filename | Description |
---|---|
jcc27483-sup-0001-Supinfo.pdfPDF document, 1.5 MB | Figure S1. Optimized structures of the ground states (GSs/GSs') and transition states (TSs) of (IC6F4I) (OONC6H4NOO) (2) at ωB97XD, PBE0, and TPSSh levels, with the optimized halogen bond lengths indicated in Å and the activation energy ΔEa indicated in kcal·mol−1. Figure S2. Calculated electrostatic potential surfaces of the GSs/GSs' and TSs of (IC6F4I)2(OONC6H4NOO)2 (4) and (IC6F4I)3(OONC6H4NOO)2 (5). Figure S3. Donor-acceptor orbital overlapping patterns of the fluxional halogen bonds in the GSs' of (IC6F4I)(OONC6H4NOO) (2), (IC6F4I)2(OONC6H4NOO) (3), (IC6F4I)2(OONC6H4NOO)2 (4), and (IC6F4I)3(OONC6H4NOO)2 (5). Figure S4. Donor–acceptor orbital overlapping patterns of the basically unchanged halogen bonds in (IC6F4I)2(OONC6H4NOO) (3) and (IC6F4I)2(OONC6H4NOO)2 (4). Figure S5. Donor–acceptor orbital overlapping patterns of the basically unchanged halogen bonds in (IC6F4I)3(OONC6H4NOO)2 (5). Figure S6. Calculated RDG versus sign(λ2)ρ plots and color-filled RDG isosurfaces of the GSs, TSs, GSs' of (IC6F4I)2(OONC6H4NOO)2 (4) and (IC6F4I)3(OONC6H4NOO)2 (5) in the fluxional processes. Figure S7. Calculated QTAIM graphs of the GSs' of (IC6F4I)(OONC6H4NOO) (2), (IC6F4I)2(OONC6H4NOO) (3), (IC6F4I)2(OONC6H4NOO)2 (4), and (IC6F4I)3(OONC6H4NOO)2 (5). Table S1. Calculated QTAIM parameters of the BCPs in the concerned I···O interactions in complexes (2)–(5). Table S2. Optimized cartesian coordinates of GSs, TSs and GSs' of complexes (1)–(5). |
jcc27483-sup-0002-VideoS1.gifGIF image, 189.9 KB | Video S1. |
jcc27483-sup-0003-VideoS2.gifGIF image, 211 KB | Video S2. |
jcc27483-sup-0004-VideoS3.gifGIF image, 333.3 KB | Video S3. |
jcc27483-sup-0005-VideoS4.gifGIF image, 147.5 KB | Video S4. |
jcc27483-sup-0006-VideoS5.gifGIF image, 205.5 KB | Video S5. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1J. S. Murray, K. E. Riley, P. Politzer, T. Clark, Aust. J. Chem. 2010, 63, 1598.
- 2P. Politzer, J. S. Murray, T. Clark, Phys. Chem. Chem. Phys. 2013, 15, 11178.
- 3H. J. Schneider, Angew. Chem. Int. Edit. 2009, 48, 3924.
- 4A. Mukherjee, S. Tothadi, G. R. Desiraju, Acc. Chem. Res. 2014, 47, 2514.
- 5D. Bulfield, E. Engelage, L. Mancheski, J. Stoesser, S. M. Huber, Chem. Eur. J. 2020, 26, 1567.
- 6M. Bartkowski, S. Giordani, Nanoscale 2020, 12, 9352.
- 7P. Metrangolo, F. Meyer, T. Pilati, G. Resnati, G. Terraneo, Angew. Chem. Int. Edit. 2008, 47, 6114.
- 8S. A. Hofstadler, K. A. Sannes-Lowery, Nat. Rev. Drug Discov. 2006, 5, 585.
- 9Z. L. Li, Z. Q. Lin, ACS Nano 2021, 15, 3152.
- 10K. S. Mali, K. Lava, K. Binnemans, S. Feyter, Chem. Eur. J. 2010, 16, 14447.
- 11G. A. Jeffrey, An introduction to hydrogen bonding, Oxford University Press, New York 1997.
- 12S. Scheiner, Hydrogen bonding: a theoretical perspective, Oxford University Press, USA, 1997.
10.1093/oso/9780195090116.001.0001 Google Scholar
- 13P. Metrangolo, G. Resnati, Chem. Eur. J. 2001, 7, 2511.
10.1002/1521-3765(20010618)7:12<2511::AID-CHEM25110>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 14T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291.
- 15P. Politzer, J. S. Murray, Chem. Phys. Chem. 2013, 14, 278.
- 16V. Angarov, S. Kozuch, New J. Chem. 2018, 42, 1413.
- 17T. Clark, J. S. Murray, P. Politzer, Phys. Chem. Chem. Phys. 2018, 20, 30076.
- 18O. Hassel, J. Hvoslef, E. H. Vihovde, N. A. Sörensen, Acta Chem. Scand. 1954, 8, 873.
- 19O. Hassel, C. Rømming, Q. Rev, Chem. Soc. 1962, 16, 1.
- 20S. Nyburg, C. Faerman, Acta Cryst 1985, B41, 274.
- 21P. Metrangolo, T. Pilati, G. Terraneo, S. Biella, G. Resnati, CrystEngComm 2009, 11, 1187.
- 22G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478.
- 23R. M. Wang, D. Hartnick, U. Englert, Z. Krist-Cryst, Materials 2018, 233, 733.
- 24L. H. E. Wieske, M. Erdelyi, J. Am. Chem. Soc. 2023, 146, 3.
- 25S. van Terwingen, D. Brüx, R. M. Wang, U. Englert, Molecules 2021, 26, 3982.
- 26M. Michalczyk, W. Zierkiewicz, S. Scheiner, Cryst. Growth Des. 2022, 22, 6521.
- 27J. L. Syssa-Magalé, K. Boubekeur, P. Palvadeau, A. Meerschaut, B. Schöllhorn, CrystEngComm 2005, 7, 302.
- 28B. M. Ji, W. Z. Wang, D. S. Deng, Y. Zhang, Cryst. Growth Des. 2011, 11, 3622.
- 29H. Jain, D. Sutradhar, S. Roy, G. R. Desiraju, Angew. Chem. Int. Edit. 2021, 60, 12841.
- 30C. Y. Gao, Y. Y. Ma, Q. Chen, S. D. Li, J. Clust. Sci. 2024, 35, 693.
- 31F. H. Allen, B. S. Goud, V. J. Hoy, J. A. K. Howard, G. R. Desiraju, J. Chem. Soc. Chem. Commun. 1994, 23, 2729.
- 32M. Yan, H. R. Li, X. Y. Zhao, X. Q. Lu, Y. W. Mu, H. G. Lu, S. D. Li, J. Comput. Chem. 2019, 40, 966.
- 33M. Yan, H. R. Li, X. X. Tian, Y. W. Mu, H. G. Lu, S. D. Li, J. Comput. Chem. 2019, 40, 1227.
- 34X. Y. Zhao, X. M. Luo, X. X. Tian, H. G. Lu, S. D. Li, J. Clust. Sci. 2019, 30, 115.
- 35Y. J. Wang, X. Y. Zhao, Q. Chen, H. J. Zhai, S. D. Li, Nanoscale 2015, 7, 16054.
- 36G. Martínez-Guajardo, A. P. Sergeeva, A. I. Boldyrev, T. Heine, J. M. Ugalde, G. Merino, Chem. Commun. 2011, 47, 6242.
- 37M. R. Fagiani, X. W. Song, P. Petkov, S. Debnath, S. Gewinner, W. Schöllkopf, T. Heine, A. Fielicke, K. R. Asmis, Angew. Chem. Int. Edit. 2017, 56, 501.
- 38Y. J. Wang, X. R. You, Q. Chen, L. Y. Feng, K. Wang, T. Ou, X. Y. Zhao, H. J. Zhai, S. D. Li, Phys. Chem. Chem. Phys. 2016, 18, 15774.
- 39Y. G. Yang, D. M. Jia, Y. J. Wang, H. J. Zhai, Y. Man, S. D. Li, Nanoscale 2017, 9, 1443.
- 40H. R. Li, M. Zhang, M. Yan, W. Y. Zan, X. X. Tian, Y. W. Mu, S. D. Li, J. Clust. Sci. 2020, 31, 331.
- 41X. Q. Lu, Q. Chen, X. X. Tian, Y. W. Mu, H. G. Lu, S. D. Li, Nanoscale 2019, 11, 21311.
- 42Y. Y. Ma, M. Yan, H. R. Li, Y. B. Wu, X. X. Tian, H. G. Lu, S. D. Li, Sci. Rep. 2019, 9, 17074.
- 43C. Y. Gao, Y. Y. Ma, M. Yan, S. D. Li, J. Shanxi Univ. (Nat. Sci. Ed.) 2021, 44, 287.
- 44Y. Zhao, D. G. Truhlar, Theor. Chem. Accounts 2008, 120, 215.
- 45S. Kozuch, J. M. L. Martin, J. Chem. Theory Comput. 2013, 9, 1918.
- 46A. Forni, S. Pieraccini, S. Rendine, M. Sironi, J. Comput. Chem. 2014, 35, 386.
- 47G. M. Wang, Z. Q. Chen, Z. J. Xu, J. N. Wang, Y. Yang, T. T. Cai, J. Y. Shi, W. L. Zhu, J. Phys. Chem. 2016, 120, 610.
- 48R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
- 49J. D. Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 084106.
- 50C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
- 51V. N. Staroverov, G. E. Scuseria, J. M. Tao, J. P. Perdew, J. Chem. Phys. 2003, 119, 12129.
- 52G. D. Purvis, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910.
- 53K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett. 1989, 157, 479.
- 54S. F. Boys, F. Bernardi, Mol. Phys. 2002, 100, 65.
- 55C. Lee, W. Yang, R. G. Parr, Phys. Rev. B Condens. Matter 1988, 37, 785.
- 56V. Froidevaux, M. Borne, E. Laborbe, R. Auvergne, A. Gandini, B. Boutevin, RSC Adv. 2015, 5, 37742.
- 57M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03, Gaussian Inc, Wallingford CT 2016.
- 58E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429.
- 59J. S. Murray, P. Politzer, J. Mol. Struct. 1998, 425, 107.
- 60P. Politzer, J. S. Murray, Fluid Phase Equilib. 2001, 185, 129.
- 61G. Roos, J. S. Murray, Phys. Chem. Chem. Phys. 2024, 26, 7592.
- 62E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, W. T. Yang, J. Am. Chem. Soc. 2010, 132, 6498.
- 63R. F. W. Bader, Chem. Rev. 1991, 91, 893.
- 64T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
- 65W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.
- 66A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
- 67G. Saleh, C. Gatti, L. Lo Presti, Comput. Theor. Chem. 2012, 998, 148.
- 68D. J. R. Duarte, G. L. Sosa, N. M. Peruchena, J. Mol. Model. 2013, 19, 2035.
- 69R. Bianchi, G. Gervasio, D. Marabello, Inorg. Chem. 2000, 39, 2360.
- 70D. Cremer, E. Kraka, Angew. Chem. Int. Edit. 1984, 23, 627.
- 71E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys. 2002, 117, 5529.