Modulation of membrane permeability by carbon dioxide
Hong Zhang
Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin, 300071 People's Republic of China
Search for more papers by this authorXueguang Shao
Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin, 300071 People's Republic of China
Search for more papers by this authorFrançois Dehez
Laboratoire International Associé CNRS and University of Illinois at Urbana−Champaign, Vandœuvre-lès-Nancy, F-54506 France
LPCT, UMR 7019 Université de Lorraine CNRS, Vandœuvre-lès-Nancy, F-54500 France
Search for more papers by this authorCorresponding Author
Wensheng Cai
Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin, 300071 People's Republic of China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Christophe Chipot
Laboratoire International Associé CNRS and University of Illinois at Urbana−Champaign, Vandœuvre-lès-Nancy, F-54506 France
LPCT, UMR 7019 Université de Lorraine CNRS, Vandœuvre-lès-Nancy, F-54500 France
Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois, 61801
E-mail: [email protected]; [email protected]Search for more papers by this authorHong Zhang
Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin, 300071 People's Republic of China
Search for more papers by this authorXueguang Shao
Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin, 300071 People's Republic of China
Search for more papers by this authorFrançois Dehez
Laboratoire International Associé CNRS and University of Illinois at Urbana−Champaign, Vandœuvre-lès-Nancy, F-54506 France
LPCT, UMR 7019 Université de Lorraine CNRS, Vandœuvre-lès-Nancy, F-54500 France
Search for more papers by this authorCorresponding Author
Wensheng Cai
Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin, 300071 People's Republic of China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Christophe Chipot
Laboratoire International Associé CNRS and University of Illinois at Urbana−Champaign, Vandœuvre-lès-Nancy, F-54506 France
LPCT, UMR 7019 Université de Lorraine CNRS, Vandœuvre-lès-Nancy, F-54500 France
Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois, 61801
E-mail: [email protected]; [email protected]Search for more papers by this authorAbstract
Promoting drug delivery across the biological membrane is a common strategy to improve bioavailability. Inspired by the observation that carbonated alcoholic beverages can increase the absorption rate of ethanol, we speculate that carbon dioxide (CO2) molecules could also enhance membrane permeability to drugs. In the present work, we have investigated the effect of CO2 on the permeability of a model membrane formed by 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipids to three drug-like molecules, namely, ethanol, 2′,3′-dideoxyadenosine, and trimethoprim. The free-energy and fractional-diffusivity profiles underlying membrane translocation were obtained from μs-timescale simulations and combined in the framework of the fractional solubility-diffusion model. We find that addition of CO2 in the lipid environment results in an increase of the membrane permeability to the three substrates. Further analysis of the permeation events reveals that CO2 expands and loosens the membrane, which, in turn, facilitates permeation of the drug-like molecules. © 2019 Wiley Periodicals, Inc.
Supporting Information
Filename | Description |
---|---|
jcc26063-sup-0001-supinfo.pdfPDF document, 293.6 KB | Appendix S1: supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. E. Noble, J. A. Endicott, L. N. Johnson, Science 2004, 303, 1800.
- 2G. Sliwoski, S. Kothiwale, J. Meiler, E. W. Lowe, Pharmacol. Rev. 2014, 66, 334.
- 3J. A. DiMasi, R. W. Hansen, H. G. Grabowski, J. Health Econ. 2003, 22, 151.
- 4K. Tsaioun, M. Bottlaender, A. Mabondzo, BMC Neurol. 2009, 9, S1.
- 5J. Bowes, A. J. Brown, J. Hamon, W. Jarolimek, A. Sridhar, G. Waldron, S. Whitebread, Nat. Rev. Drug Discov. 2012, 11, 909.
- 6P. Fasinu, V. Pillay, V. M. Ndesendo, L. C. du Toit, Y. E. Choonara, Biopharm. Drug Dispos. 2011, 32, 185.
- 7R. Panchagnula, N. S. Thomas, Int. J. Pharm. 2000, 201, 131.
- 8R. N. Gursoy, S. Benita, Biomed. Pharmacother. 2004, 58, 173.
- 9P.-C. Ho, D. J. Saville, S. Wanwimolruk, J. Pharm. Pharm. Sci. 2001, 4, 217.
- 10F. Eeckman, A. J. Moës, K. Amighi, Int. J. Pharm. 2002, 241, 113.
- 11S. Zhang, Z. Chu, C. Yin, C. Zhang, G. Lin, Q. Li, J. Am. Chem. Soc. 2013, 135, 5709.
- 12M. M. Kamphuis, A. P. Johnston, G. K. Such, H. H. Dam, R. A. Evans, A. M. Scott, E. C. Nice, J. K. Heath, F. Caruso, J. Am. Chem. Soc. 2010, 132, 15881.
- 13N. D. Derle, R. Bhamber, J. Appl. Pharm. Sci. 2012, 2, 34.
- 14P. W. Morrison, N. N. Porfiryeva, S. Chahal, I. A. Salakhov, C. N. Lacourt, I. I. Semina, R. I. Moustafine, V. V. Khutoryanskiy, Mol. Pharm. 2017, 14, 3528.
- 15R. Perkins, V. Vaida, J. Am. Chem. Soc. 2017, 139, 14388.
- 16C. Roberts, S. Robinson, J. Forensic Leg. Med. 2007, 14, 398.
- 17N. Edkins, M. Murray, J. Physiol. 1926, 62, 13.
- 18F. Ridout, S. Gould, C. Nunes, I. Hindmarch, Alcohol Alcohol. 2003, 38, 381.
- 19A. Paton, BMJ 2005, 330, 85.
- 20C. H. Tse, J. Comer, Y. Wang, C. Chipot, J. Chem. Theory Comput. 2018, 14, 2895.
- 21J. Comer, K. Schulten, C. Chipot, J. Chem. Theory Comput. 2017, 13, 2523.
- 22C.-H. Tse, J. Comer, S. K. Sang Chu, Y. Wang, C. Chipot, J. Chem. Theory Comput. 2019, 15, 2913.
- 23J. Comer, C. Chipot, F. D. González-Nilo, J. Chem. Theory Comput. 2013, 9, 876.
- 24J. Comer, K. Schulten, C. Chipot, J. Chem. Theory Comput. 2014, 10, 554.
- 25J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O'Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. MacKerell, Jr.., R. W. Pastor, J. Phys. Chem. B 2010, 114, 7830.
- 26K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, J. Comput. Chem. 2010, 31, 671.
- 27K. Vanommeslaeghe, A. D. MacKerell, Jr.., J. Chem. Inf. Model. 2012, 52, 3144.
- 28K. Vanommeslaeghe, E. P. Raman, A. D. MacKerell, Jr.., J. Chem. Inf. Model. 2012, 52, 3155.
- 29W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926.
- 30J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 2005, 26, 1781.
- 31S. E. Feller, Y. Zhang, R. W. Pastor, B. R. Brooks, J. Chem. Phys. 1995, 103, 4613.
- 32H. C. Andersen, J. Comput. Chem. 1983, 52, 24.
- 33S. Miyamoto, P. A. Kollman, J. Comput. Chem. 1992, 13, 952.
- 34M. Tuckerman, B. J. Berne, G. J. Martyna, J. Chem. Phys. 1992, 97, 1990.
- 35T. Darden, D. York, L. Pedersen, J. Chem. Phys. 1993, 98, 10089.
- 36W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 1996, 14, 33.
- 37R. Guixa-González, I. Rodriguez-Espigares, J. M. Ramírez-Anguita, P. Carrio-Gaspar, H. Martinez-Seara, T. Giorgino, J. Selent, Bioinformatics 2014, 30, 1478.
- 38E. Darve, A. Pohorille, J. Chem. Phys. 2001, 115, 9169.
- 39J. Comer, J. C. Gumbart, J. Hénin, T. Lelièvre, A. Pohorille, C. Chipot, J. Phys. Chem. B 2014, 119, 1129.
- 40H. Fu, X. Shao, C. Chipot, W. Cai, J. Chem. Theory Comput. 2016, 12, 3506.
- 41C. Chipot, J. Comer, Sci. Rep. 2016, 6, 35913.
- 42R. Sun, Y. Han, J. M. Swanson, J. S. Tan, J. P. Rose, G. A. Voth, J. Chem. Phys. 2018, 149, 072310.
- 43K. Pratt, W. Wakeham, Proc. R. Soc. Lond. Ser. A 1974, 336, 393.
- 44A. J. Easteal, L. A. Woolf, J. Phys. Chem. 1985, 89, 1066.
- 45H. V. Ly, M. L. Longo, Biophys. J. 2004, 87, 1013.
- 46T.-X. Xiang, B. Anderson, J. Membr. Biol. 1994, 140, 111.
- 47C. Zhu, L. Jiang, T.-M. Chen, K.-K. Hwang, Eur. J. Med. Chem. 2002, 37, 399.
- 48G. Vizserálek, T. Balogh, K. Takács-Novák, B. Sinkó, Eur. J. Pharm. Sci. 2014, 53, 45.
- 49Z. Ghaemi, M. Minozzi, P. Carloni, A. Laio, J. Phys. Chem. B 2012, 116, 8714.
- 50S. J. Marrink, H. J. Berendsen, J. Phys. Chem. 1996, 100, 16729.
- 51N. Kučerka, S. Tristram-Nagle, J. F. Nagle, J. Membr. Biol. 2006, 208, 193.
- 52W. Shinoda, Biochim. Biophys. Acta, Biomembr. 2016, 1858, 2254.