Dynamic covalent bond from first principles: Diarylbibenzofuranone structural, electronic, and oxidation studies
Gabriel R. Schleder
CECS - Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Brazil
Search for more papers by this authorAdalberto Fazzio
Brazilian Nanotechnology National Laboratory (LNNano)/CNPEM, PO Box 6192, Campinas, São Paulo, 13083-970 Brazil
CCNH - Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Brazil
Search for more papers by this authorCorresponding Author
Jeverson T. Arantes
CECS - Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Brazil
E-mail: [email protected]Search for more papers by this authorGabriel R. Schleder
CECS - Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Brazil
Search for more papers by this authorAdalberto Fazzio
Brazilian Nanotechnology National Laboratory (LNNano)/CNPEM, PO Box 6192, Campinas, São Paulo, 13083-970 Brazil
CCNH - Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Brazil
Search for more papers by this authorCorresponding Author
Jeverson T. Arantes
CECS - Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Brazil
E-mail: [email protected]Search for more papers by this authorAbstract
A structure that can self-heal under standard conditions is a challenge faced nowadays and is one of the most promising areas in smart materials science. This can be achieved by dynamic bonds, of which diarylbibenzofuranone (DABBF) dynamic covalent bond is an appealing solution. In this report, we studied the DABBF bond formation against arylbenzofuranone (ABF) and O2 reaction (autoxidation). Our results show that the barrierless DABBF bond formation is preferred over autoxidation due to the charge transfer process that results in the weakly bonded superoxide. We calculated the electronic and structural properties using total energy density functional theory. © 2017 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
jcc24899-sup-0001-suppinfo.pdf135.5 KB | Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. B. Murphy, F. Wudl, Prog. Polym. Sci. 2010, 35, 223.
- 2F. Liu, M. W. Urban, Prog. Polym. Sci. 2010, 35, 3.
- 3Y. Amamoto, J. Kamada, H. Otsuka, A. Takahara, K. Matyjaszewski, Angew. Chem. 2011, 123, 1698.
- 4Y.-K. Song, Y.-H. Jo, Y.-J. Lim, S.-Y. Cho, H.-C. Yu, B.-C. Ryu, S.-I. Lee, C.-M. Chung, ACS Appl. Mater. Interfaces 2013, 5, 1378.
- 5B. Ghosh, M. W. Urban, Science 2009, 323, 1458.
- 6A. Phadke, C. Zhang, B. Arman, C.-C. Hsu, R. A. Mashelkar, A. K. Lele, M. J. Tauber, G. Arya, S. Varghese, Proc Natl Acad Sci USA 2012, 109, 4383.
- 7M. L. Zheludkevich, D. G. Shchukin, K. A. Yasakau, H. Möhwald, M. G. S. Ferreira, Chem. Mater. 2007, 19, 402.
- 8G. Scheltjens, M. Diaz, J. Brancart, G. Van Assche, B. Van Mele, React. Funct. Polym. 2013, 73, 413.
- 9K. Ishida, N. Yoshie, Macromol. Biosci. 2008, 8, 916.
- 10A. Yabuki, T. Nishisaka, Corros. Sci. 2011, 53, 4118.
- 11S. García, H. Fischer, S. van der Zwaag, Prog. Org. Coat. 2011, 72, 211.
- 12U. Lafont, H. van Zeijl, S. van der Zwaag, ACS Appl. Mater. Interfaces 2012, 4, 6280.
- 13G. O. Wilson, M. M. Caruso, S. R. Schelkopf, N. R. Sottos, S. R. White, J. S. Moore, ACS Appl. Mater. Interfaces 2011, 3, 3072.
- 14A. M. Asadirad, S. Boutault, Z. Erno, N. R. Branda, J. Am. Chem. Soc. 2014, 136, 3024.
- 15J.-M. Lehn, Prog. Polym. Sci. 2005, 30, 814.
- 16P. Cordier, F. Tournilhac, C. Soulié-Ziakovic, L. Leibler, Nature 2008, 451, 977.
- 17Y. Shi, M. Wang, C. Ma, Y. Wang, X. Li, G. Yu, Nano Lett. 2015, 15, 6276.
- 18R. K. Bose, N. Hohlbein, S. J. Garcia, A. M. Schmidt, S. van der Zwaag, Phys. Chem. Chem. Phys. 2015, 17, 1697.
- 19J.-F. Mei, X.-Y. Jia, J.-C. Lai, Y. Sun, C.-H. Li, J.-H. Wu, Y. Cao, X.-Z. You, Z. Bao, Macromol. Rapid Commun. 2016, 37, 1667.
- 20S. J. Rowan, S. J. Cantrill, G. R. L. Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. Int. Ed. 2002, 41, 898.
- 21R. J. Wojtecki, M. A. Meador, S. J. Rowan, Nat. Mater. 2011, 10, 14.
- 22T. Maeda, H. Otsuka, A. Takahara, Prog. Polym. Sci. 2009, 34, 581.
- 23S. Spoljaric, A. Salminen, N. D. Luong, J. Seppälä, Eur. Polym. J. 2014, 56, 105.
- 24H. Jin, G. M. Miller, S. J. Pety, A. S. Griffin, D. S. Stradley, D. Roach, N. R. Sottos, S. R. White, Int. J. Adhes. Adhes. 2013, 44, 157.
- 25P. Mukhopadhyay, N. Fujita, A. Takada, T. Kishida, M. Shirakawa, S. Shinkai, Angewandte Chemie International Edition 2010, 49, 6338. ISSN 14337851, URL http://doi.wiley.com/10.1002/anie.201001382.
- 26A. A. Kavitha, N. K. Singha, ACS Appl. Mater. Interfaces 2009, 1, 1427.
- 27W. G. Skene, J.-M. P. Lehn, Proc. Natl. Acad. Sci. USA 2004, 101, 8270.
- 28E. D. Rodriguez, X. Luo, P. T. Mather, ACS Appl. Mater. Interfaces 2011, 3, 152.
- 29D. Y. Wu, S. Meure, D. Solomon, Prog. Polym. Sci. 2008, 33, 479.
- 30B. Blaiszik, S. Kramer, S. Olugebefola, J. Moore, N. Sottos, S. White, Annu. Rev. Mater. Res. 2010, 40, 179.
- 31P. Michael, D. Döhler, W. H. Binder, Polymer 2015, 69, 216.
- 32P. Zhang, G. Li, Prog. Polym. Sci. 2016, 57, 32.
- 33L. Lu, J. Fan, G. Li, Polymer 2016, 105, 10.
- 34A. Shojaei, S. Sharafi, G. Li, Mech. Mater. 2015, 81, 25.
- 35D. Döhler, H. Peterlik, W. H. Binder, Polymer 2015, 69, 264.
- 36R. Araya-Hermosilla, G. Lima, P. Raffa, G. Fortunato, A. Pucci, M. E. Flores, I. Moreno-Villoslada, A. Broekhuis, F. Picchioni, Eur. Polym. J. 2016, 81, 186.
- 37S. Y. An, S. M. Noh, J. K. Oh, Macromol. Rapid Commun. 2017, 38, 1600777.
- 38G. Schaeffer, E. Buhler, S. J. Candau, J.-M. Lehn, Macromolecules 2013, 46, 5664.
- 39R. Martin, A. Rekondo, A. Ruiz de Luzuriaga, A. Santamaria, I. Odriozola, RSC Adv. 2015, 5, 17514.
- 40B. C.-K. Tee, C. Wang, R. Allen, Z. Bao, Nat. Nanotechnol. 2012, 7, 825.
- 41Y. Liu, J.-M. Lehn, A. K. H. Hirsch, Acc. Chem. Res. 2017, 50, 376.
- 42K. Imato, M. Nishihara, T. Kanehara, Y. Amamoto, A. Takahara, H. Otsuka, Angew. Chem. Int. Ed. 2012, 51, 1138.
- 43K. Imato, T. Ohishi, M. Nishihara, A. Takahara, H. Otsuka, J. Am. Chem. Soc. 2014, 136, 11839.
- 44K. Imato, A. Takahara, H. Otsuka, Macromolecules 2015, 48, 5632.
- 45K. Imato, A. Irie, T. Kosuge, T. Ohishi, M. Nishihara, A. Takahara, H. Otsuka, Angew. Chem. Int. Ed. 2015, 54, 6168.
- 46K. Imato, T. Kanehara, T. Ohishi, M. Nishihara, H. Yajima, M. Ito, A. Takahara, H. Otsuka, ACS Macro Lett. 2015, 4, 1307.
- 47R. Yoneyama, T. Sato, K. Imato, T. Kosuge, T. Ohishi, Y. Higaki, A. Takahara, H. Otsuka, Chem. Lett. 2016, 45, 36.
- 48J. C. Scaiano, A. Martin, G. P. A. Yap, K. U. Ingold, Org. Lett. 2000, 2, 899.
- 49T. Kosuge, K. Imato, R. Goseki, H. Otsuka, Macromolecules 2016, 49, 5903.
- 50H. Oka, K. Imato, T. Sato, T. Ohishi, R. Goseki, H. Otsuka, ACS Macro Lett. 2016, 5, 1124.
- 51K. Imato, T. Kanehara, S. Nojima, T. Ohishi, Y. Higaki, A. Takahara, H. Otsuka, Chem. Commun. 2016, 52, 10482.
- 52K. Imato, J. C. Natterodt, J. Sapkota, R. Goseki, C. Weder, A. Takahara, H. Otsuka, Polym. Chem. 2017, 8, 2115.
- 53L. Zedler, M. D. Hager, U. S. Schubert, M. J. Harrington, M. Schmitt, J. Popp, B. Dietzek, Mater. Today 2014, 17, 57.
- 54J. A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaý, Y. Zhang, A. C. Balazs, T. Kowalewski, K. Matyjaszewski, Macromolecules 2012, 45, 142.
- 55Z. Wei, J. H. Yang, J. Zhou, F. Xu, M. Zrínyi, P. H. Dussault, Y. Osada, Y. M. Chen, Chem. Soc. Rev. 2014, 43, 8114.
- 56S. J. Garcia, Eur. Polym. J. 2014, 53, 118.
- 57J. T. Arantes, M. P. Lima, A. Fazzio, H. Xiang, S.-H. Wei, G. M. Dalpian, J. Phys. Chem. B 2009, 113, 5376.
- 58G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 59G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
- 60Y. Zhang, W. Yang, Phys. Rev. Lett. 1998, 80, 890.
- 61S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 62S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
- 63M. Frenette, C. Aliaga, E. Font-Sanchis, J. C. Scaiano, Org. Lett. 2004, 6, 2579.
- 64P. Magnus, J. D. Venable (nee Kreisberg), L. Shen, V. Lynch, Tetrahedron Lett. 2005, 46, 707.
- 65X.-Q. Zhu, J. Zhou, C.-H. Wang, X.-T. Li, S. Jing, J. Phys. Chem. B 2011, 115, 3588.
- 66C. Aliaga, M. C. Rezende, Magn. Reson. Chem. 2014, 52, 409.
- 67L. Goerigk, S. Grimme, J. Chem. Theory Comput. 2011, 7, 291.
- 68E. V. Bejan, E. Font-Sanchis, J. C. Scaiano, Org. Lett. 2001, 3, 4059.
- 69M. Frenette, P. D. MacLean, L. R. C. Barclay, J. C. Scaiano, J. Am. Chem. Soc. 2006, 128, 16432.
- 70A. Martínez, M.-V. Vázquez, J. Luis Carreón-Macedo, L. E. Sansores, R. Salcedo, Tetrahedron 2003, 59, 6415.
- 71X. Chen, Science 2002, 295, 1698.
- 72K. U. Ingold, D. A. Pratt, Chem. Rev. 2014, 114, 9022.
- 73E. Sanville, S. D. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 2007, 28, 899.
- 74M. Yu, D. R. Trinkle, J. Chem. Phys. 2011, 134, 064111.
- 75S. C. Abrahams, J. Kalnajs, Acta Crystallogr. 1955, 8, 503.
- 76M. Hayyan, M. A. Hashim, I. M. AlNashef, Chem. Rev. 2016, 116, 3029.
- 77J. S. Wright, H. Shadnia, L. L. Chepelev, J. Comput. Chem. 2009, 30, 1016.