Conformational dynamics of cathepsin D and binding to a small-molecule BACE1 inhibitor
Christopher R. Ellis
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201
Search for more papers by this authorCheng-Chieh Tsai
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201
Search for more papers by this authorFang-Yu Lin
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201
Search for more papers by this authorCorresponding Author
Jana Shen
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201
E-mail: [email protected]Search for more papers by this authorChristopher R. Ellis
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201
Search for more papers by this authorCheng-Chieh Tsai
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201
Search for more papers by this authorFang-Yu Lin
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201
Search for more papers by this authorCorresponding Author
Jana Shen
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, 21201
E-mail: [email protected]Search for more papers by this authorAbstract
BACE1 is a major therapeutic target for prevention and treatment of Alzheimer's disease. Developing inhibitors that can selectively target BACE1 in favor of other proteases, especially cathepsin D (CatD), has presented significant challenges. Here, we investigate the conformational dynamics and protonation states of BACE1 and CatD using continuous constant pH molecular dynamics with pH replica-exchange sampling protocol. Despite similar structure, BACE1 and CatD exhibit markedly different active site dynamics. BACE1 displays pH-dependent flap dynamics that controls substrate accessibility, while the CatD flap is relatively rigid and remains open in the pH range 2.5–6. Interestingly, although each protease hydrolyzes peptide bonds, the protonation states of the catalytic dyads are different within the active pH range. The acidic and basic components of the BACE1 catalytic dyad are clear, while either aspartic acid of the CatD catalytic dyad could play the role of acid or base. Finally, we investigate binding of the inhibitor LY2811376 developed by Eli Lilly to BACE1 and CatD. Surprisingly, in the enzyme active pH range, LY2811376 forms a stronger salt bridge with the catalytic dyad in CatD than in BACE1, which might explain the retinal toxicity of the inhibitor related to off-target inhibition of CatD. This work highlights the complexity and challenge in structure-based drug design where receptor-ligand binding induces protonation state change in both the protein and the inhibitor. © 2017 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
jcc24719-sup-0001-suppinfo.pdf334.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 P. T. Lansbury, H. A. Lashuel, Nature 2006, 443, 774.
- 2 R. Vassar, Alzheimer's Res. Ther. 2014, 6, 89.
- 3 S. Barão, D. Moechars, S. F. Lichtenthaler, B. D. Strooper, Trends Neurosci. 2016, 39, 158.
- 4 P. C. May, R. A. Dean, S. L. Lowe, F. Martenyi, S. M. Sheehan, L. N. Boggs, S. A. Monk, B. M. Mathes, D. J. Mergott, B. M. Watson, S. L. Stout, D. E. Timm, E. S. LaBell, C. R. Gonzales, M. Nakano, S. S. Jhee, M. Yen, L. Ereshefsky, T. D. Lindstrom, D. O. Calligaro, P. J. Cocke, D. G. Hall, S. Friedrich, M. Citron, J. E. Audia, J. Neurosci. 2011, 31, 16507.
- 5 C. R. Butler, M. A. Brodney, E. M. Beck, G. Barreiro, C. E. Nolan, F. Pan, F. Vajdos, K. Parris, A. H. Varghese, C. J. Helal, R. Lira, S. D. Doran, D. R. R. L. M. B. J. K. Dutra, L. M. A. K. Ogilvie, J. C. Murray, J. M. Young, K. Atchison, A. Robshaw, C. Gonzales, J. Wang, Y. Zhang, B. T. O'Neill, J. Med. Chem. 2015, 58, 2678.
- 6 P. Saftig, M. Hetman, W. Schmahl, K. Weber, L. Heine, H. Mossmann, A. Köster, B. Hess, M. Evers, K. von Figura, C. Peters, EMBO J. 1995, 14, 3599.
- 7 M. Koike, H. Nakanishi, P. Saftig, J. Ezaki, K. Isahara, Y. Ohsawa, W. Schulz-Schaeffer, T. Watanabe, S. Waguri, S. Kametaka, M. Shibata, K. Yamamoto, E. Kominami, C. Peters, K. von Figura, Y. Uchiyama, J. Neurosci. 2000, 20, 6898.
- 8 R. Steinfeld, K. Reinhardt, K. Schreiber, M. Hillebrand, R. Kraetzner, W. Brück, P. Saftig, J. Gärtner, Am. J. Hum. Genet. 2006, 78, 988.
- 9 M. A. Brodney, E. M. Beck, C. R. Butler, G. Barreiro, E. F. Johnson, D. Riddell, K. Parris, C. E. Nolan, Y. Fan, K. Atchison, C. Gonzales, A. E. Robshaw, S. D. Doran, M. W. Bundesmann, L. Buzon, J. Dutra, K. Henegar, E. LaChapelle, X. Hou, B. N. Rogers, J. Pandit, R. Lira, L. Martinez-Alsina, P. Mikochik, J. C. Murray, K. Ogilvie, L. Price, S. M. Sakya, A. Yu, Y. Zhang, B. T. O'Neill, J. Med. Chem. 2015, 58, 3223.
- 10 E. T. Baldwin, T. N. Bhat, S. Gulnik, M. V. Hosur, II, R. C. Sowder, R. E. Cachau, J. Collins, A. M. Silva, J. W. Erickson, Proc. Natl. Acad. Sci. USA 1993, 90, 6796.
- 11 C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T. L. Madden, BMC Bioinformatics 2009, 10, 1.
- 12 L. Hong, J. Tang, Biochemistry 2004, 43, 4689.
- 13 L. Toulokhonova, W. J. Metzler, M. R. Witmer, R. A. Copeland, J. Marcinkeviciene, J. Biol. Chem. 2003, 278, 4582.
- 14 F. Grüninger-Leitch, D. Schlatter, E. Küng, P. Nelböck, H. Döbeli, J. Biol. Chem. 2002, 277, 4687.
- 15 H. Shimizu, A. Tosaki, K. Kaneko, T. Hisano, T. Sakurai, N. Nukina, Mol. Cell. Biol. 2008, 28, 3663.
- 16 N. E. Goldfarb, M. T. Lam, A. K. Bose, A. M. Patel, A. J. Duckworth, B. M. Dunn, Biochemistry 2005, 44, 15725.
- 17 J. Yuan, S. Venkatraman, Y. Zheng, B. M. McKeever, L. W. Dillard, S. B. Singh, J. Med. Chem. 2013, 56, 4156.
- 18 S. A. Spronk, H. A. Carlson, Proteins 2011, 79, 2247.
- 19 C. R. Ellis, J. Shen, J. Am. Chem. Soc. 2015, 137, 9543.
- 20 C. R. Ellis, C. C. Tsai, X. Hou, J. Shen, J. Phys. Chem. Lett. 2016, 7, 944.
- 21 A. Y. Lee, S. V. Gulnik, J. W. Erickson, Nat. Struct. Biol. 1998, 5, 866.
- 22 F. Milletti, L. Storchi, G. Sforna, G. Cruciani, J. Chem. Inf. Model. 2007, 47, 2172.
- 23 F. Milletti, L. Storchi, L. Goracci, S. Bendels, B. Wagner, M. Kansy, G. Cruciani, Eur. J. Med. Chem. 2010, 45, 4270.
- 24 B. R. Brooks, C. L. Brooks, III, A. D. Mackerell, Jr., L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartles, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. K. T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
- 25 W. Im, M. S. Lee, C. L. Brooks, III, J. Comput. Chem. 2003, 24, 1691.
- 26 J. A. Wallace, Y. Wang, C. Shi, K. J. Pastoor, B. L. Nguyen, K. Xia, J. K. Shen, Proteins 2011, 79, 3364.
- 27 J. A. Wallace, J. K. Shen, J. Chem. Theory Comput. 2011, 7, 2617.
- 28 M. S. Lee, F. R. Salsbury, Jr., C. L. Brooks, III, Proteins 2004, 56, 738.
- 29 J. Khandogin, C. L. Brooks, III, Biophys. J. 2005, 89, 141.
- 30 J. Khandogin, C. L. Brooks, III, Biochemistry 2006, 45, 9363.
- 31 C. Shi, J. A. Wallace, J. K. Shen, Biophys. J. 2012, 102, 1590.
- 32 M. Shatsky, R. Nussinov, H. J. Wolfson, Proteins 2004, 56, 143.
- 33 A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, III, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 1998, 102, 3586.
- 34 A. D. MacKerell, Jr., M. Feig, C. L. Brooks, III, J. Am. Chem. Soc. 2004, 126, 698.
- 35 K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A. D. MacKerell Jr, J. Comput. Chem. 2010, 31, 671.
- 36 W. G. Hoover, Phys. Rev. A 1985, 31, 1695.
- 37 S. E. Feller, Y. Zhang, R. W. Pastor, B. R. Brooks, J. Chem. Phys. 1995, 103, 4613.
- 38 T. Darden, D. York, L. Pedersen, J. Chem. Phys. 1993, 98, 10089.
- 39 J. Chen, W. Im, C. L. Brooks, III, J. Am. Chem. Soc. 2006, 128, 3728.
- 40 M. Nina, T. Simonson, J. Phys. Chem. B 2002, 106, 3696.
- 41 G. M. Ullmann, J. Phys. Chem. B 2003, 107, 1263.
- 42 J. A. Wallace, J. K. Shen, J. Chem. Phys. 2012, 137, 184105.
- 43 H. Webb, B. M. Tynan-Connolly, G. M. Lee, D. Farrell, F. O'Meara, C. R. Søndergaard, K. Teilum, C. Hewage, L. P. McIntosh, J. E. Nielsen, Proteins 2011, 79, 685.
- 44 G. B. Goh, B. S. Hulbert, H. Zhou, C. L. Brooks, III, Proteins 2014, 82, 1319.