Molecular simulations to delineate functional conformational transitions in the HCV polymerase
Ester Sesmero
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
Search for more papers by this authorJodian A. Brown
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
Search for more papers by this authorCorresponding Author
Ian F. Thorpe
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
E-mail: [email protected]Search for more papers by this authorEster Sesmero
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
Search for more papers by this authorJodian A. Brown
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
Search for more papers by this authorCorresponding Author
Ian F. Thorpe
Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland, 21250
E-mail: [email protected]Search for more papers by this authorAbstract
Hepatitis C virus (HCV) is a global health concern for which there is no vaccine available. The HCV polymerase is responsible for the critical function of replicating the RNA genome of the virus. Transitions between at least two conformations (open and closed) are necessary to allow the enzyme to replicate RNA. In this study, molecular dynamic simulations were initiated from multiple crystal structures to understand the free energy landscape (FEL) explored by the enzyme as it interconverts between these conformations. Our studies reveal the location of distinct states within the FEL as well as the molecular interactions associated with these states. Specific hydrogen bonds appear to play a key role in modulating conformational transitions. This knowledge is essential to elucidate the role of these conformations in replication and may also be valuable in understanding the basis by which this enzyme is inhibited by small molecules. © 2016 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
jcc24662-sup-0001-suppinfo1.mpg1.1 MB |
Supporting Information 1 |
jcc24662-sup-0002-suppinfo2.mpg1.9 MB |
Supporting Information 2 |
jcc24662-sup-0003-suppinfo3.mpg2.4 MB |
Supporting Information 3 |
jcc24662-sup-0004-suppinfo4.mpg2.4 MB |
Supporting Information 4 |
jcc24662-sup-0005-suppinfo1.docx10.9 MB |
Supporting Information 5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Q. L. Choo, G. Kuo, A. J. Weiner, L. R. Overby, D. W. Bradley, M. Houghton, Science 1989, 244, 359.
- 2 J. P. Messina, I. H. Abraham Flaxman, A. Brown, G. S. Cooke, O. G. Pybus, E. Barnes, Hepatology 2015, 61, 77.
- 3 E. Lawitz, I. M. Jacobson, D. R. Nelson, S. Zeuzem, M. S. Sulkowski, R. Esteban, D. Brainard, J. McNally, W. T. Symonds, J. G. McHutchison, D. Dieterich, E. Gane, Ann. N. Y. Acad. Sci. 2015, 1358, 56.
- 4 P. L. McCormack, Drugs 2015, 75, 515.
- 5 G. Cheng, Y. Tian, B. Doehle, B. Peng, A. Corsa, Y. J. Lee, R. Gong, M. Yu, B. Han, S. Xu, H. Dvory-Sobol, M. Perron, Y. Xu, H. Mo, N. Pagratis, J. O. Link, W. Delaney, Antimicrob. Agents Chemother. 2016, 60, 1847.
- 6 B. D. Lindenbach, C. M. Rice, Nature 2005, 436, 933.
- 7 Y. Wei, J. Li, J. Qing, M. Huang, M. Wu, F. Gao, D. Li, Z. Hong, L. Kong, W. Huang, J. Lin, PLoS One 2016, 11, e0148181.
- 8 M. S. Mohamed, A. I. Sayed, M. A. Khedr, S. H. Soror, Bioorgan. Med. Chem. 2016, 24, 2146.
- 9 L. H. Shan, Y. Liu, Y. H. Li, H. M. Liu, Y. Ke, Curr. Top. Med. Chem. 2016, 16, 1392.
- 10 I. E. Weidlich, I. V. Filippov, J. Brown, N. Kaushik-Basu, R. Krishnan, M. C. Nicklaus, I. F. Thorpe, Bioorgan. Med. Chem. 2013, 21, 3127.
- 11 R. C. Schoenfeld, D. L. Bourdet, K. A. Brameld, E. Chin, J. de Vicente, A. Fung, S. F. Harris, E. K. Lee, S. Le Pogam, V. Leveque, J. Li, A. S. Lui, I. Najera, S. Rajyaguru, M. Sangi, S. Steiner, F. X. Talamas, J. P. Taygerly, J. Zhao, J. Med. Chem. 2013, 56, 8163.
- 12 A. Aghemo, R. De Francesco, Hepatology 2013, 58, 428.
- 13 Y. Waheed, A. Bhatti, M. Ashraf, Infect. Genet. Evol. 2013, 14, 247.
- 14 J. Deval, J. A. Symons, L. Beigelman, Curr. Opin. Virol. 2014, 9, 1.
- 15
T. S. Anantharamu,
S. Sushil,
G. Ashok Kumar,
D. Ajay Kumar,
B.,D. B. Navdeep, Int. J. Nutr. Pharmacol. Neurol. Dis. 2014, 4, S6.
10.4103/2231-0738.147455 Google Scholar
- 16 S. E. Boyce, N. Tirunagari, A. Niedziela-Majka, J. Perry, M. Wong, E. Kan, L. Lagpacan, O. Barauskas, M. Hung, M. Fenaux, T. Appleby, W. J. Watkins, U. Schmitz, R. Sakowicz, PLoS One 2014, 9, e84808.
- 17 S. Bressanelli, L. Tomei, F. A. Rey, R. De Francesco, J. Virol. 2002, 76, 3482.
- 18 S. Di Marco, C. Volpari, L. Tomei, S. Altamura, S. Harper, F. Narjes, U. Koch, M. Rowley, R. De Francesco, G. Migliaccio, A. Carfi, J. Biol. Chem. 2005, 280, 29765.
- 19 S. Chinnaswamy, A. Murali, H. Cai, G. Yi, S. Palaninathan, C. C. Kao, Virus Adapt. Treat. 2010, 2, 21.
- 20 J. M. Ontoria, E. H. Rydberg, S. Di Marco, L. Tomei, B. Attenni, S. Malancona, J. I. M. Hernando, N. Gennari, U. Koch, F. Narjes, M. Rowley, V. Summa, S. S. Carroll, D. B. Olsen, R. De Francesco, S. Altamura, G. Migliaccio, A. Carfi, J. Med. Chem. 2009, 52, 5217.
- 21 A. N. Shaw, R. Tedesco, R. Bambal, D. P. Chai, N. O. Concha, M. G. Darcy, D. Dhanak, K. J. Duffy, D. M. Fitch, A. Gates, V. K. Johnston, R. M. Keenan, J. Lin-Goerke, N. N. Liu, R. T. Sarisky, K. J. Wiggall, M. N. Zimmerman, Bioorg. Med. Chem. Lett. 2009, 19, 4350.
- 22 F. Ruebsam, S. E. Webber, M. T. Tran, C. V. Tran, D. E. Murphy, J. J. Zhao, P. S. Dragovich, S. H. Kim, L. S. Li, Y. F. Zhou, Q. Han, C. R. Kissinger, R. E. Showalter, M. Lardy, A. M. Shah, M. Tsan, R. Patel, L. A. LeBrun, R. Kamran, M. V. Sergeeva, D. M. Bartkowski, T. G. Nolan, D. A. Norris, L. Kirkovsky, Bioorg. Med. Chem. Lett. 2008, 18, 3616.
- 23 B. Davis, I. F. Thorpe, Proteins 2013, 81, 40.
- 24 B. C. Davis, J. A. Brown, I. F. Thorpe, Biophys. J. 2015, 108, 1785.
- 25 H. Ago, T. Adachi, A. Yoshida, M. Yamamoto, N. Habuka, K. Yatsunami, M. Miyano, Structure 1999, 7, 1417.
- 26 J. A. Brown, I. F. Thorpe, Biochemistry 2015, 54, 4131.
- 27 T. Adachi, H. Ago, N. Habuka, K. Okuda, M. Komatsu, S. Ikeda, K. Yatsunami, BBA-Proteins Proteom 2002, 1601, 38.
- 28 B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
- 29 J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 2005, 26, 1781.
- 30 C. A. Lesburg, M. B. Cable, E. Ferrari, Z. Hong, A. F. Mannarino, P. C. Weber, Nat. Struct. Biol. 1999, 6, 937.
- 31 A. M. Ferrenberg, R. H. Swendsen, Phys. Rev. Lett. 1988, 61, 2635.
- 32 A. M. Ferrenberg, R. H. Swendsen, Phys. Rev. Lett. 1989, 63, 1195.
- 33 R. H. Swendsen, J. S. Wang, A. M. Ferrenberg, Top. Appl. Phys. 1992, 71, 75.
- 34 M. R. Shirts, J. D. Chodera, J. Chem. Phys. 2008, 129, 124105.
- 35 I. Kim, T. W. Allen, J. Chem. Phys. 2012, 136, 164103.
- 36 B. Roux, Comput. Phys. Commun. 1995, 91, 275.
- 37 M. Souaille, B. Roux, Comput. Phys. Commun. 2001, 135, 40.
- 38 J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, K. A. Dill, J. Chem. Theory Comput. 2007, 3, 26.
- 39 R. H. Swendsen, Phys. A 1993, 194, 53.
- 40 S. Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. M. Rosenberg, J. Comput. Chem. 1992, 13, 1011.
- 41 S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. Comput. Chem. 1995, 16, 1339.
- 42 A. A. Van Dijk, E. V. Makeyev, D. H. Bamford, J. Gen. Virol. 2004, 85, 1077.
- 43 K. K. Ng, J. J. Arnold, C. E. Cameron, Curr. Top. Microbiol. Immunol. 2008, 320, 137.
- 44 D. Harrus, N. Ahmed-El-Sayed, P. C. Simister, S. Miller, M. Triconnet, C. H. Hagedorn, K. Mahias, F. A. Rey, T. Astier-Gin, S. Bressanelli, J. Biol. Chem. 2010, 285, 32906.
- 45 R. T. Mosley, T. E. Edwards, E. Murakami, A. M. Lam, R. L. Grice, J. F. Du, M. J. Sofia, P. A. Furman, M. J. Otto, J. Virol. 2012, 86, 6503.
- 46 V. Lohmann, Hepatitis C Virus: From Molecular Virology to Antiviral Therapy, Vol. 369; Springer-Verlag Berlin Heidelberg: Berlin Heidelberg, 2013.
- 47 C. Caillet-Saguy, S. P. Lim, P. Y. Shi, J. Lescar, S. Bressanelli, Antiviral Res. 2014, 105, 8.
- 48 S. Chinnaswamy, I. Yarbrough, S. Palaninathan, C. T. Kumar, V. Vijayaraghavan, B. Demeler, S. M. Lemon, J. C. Sacchettini, C. C. Kao, J. Biol. Chem. 2008, 283, 20535.
- 49 L. Tomei, S. Altamura, L. Bartholomew, A. Biroccio, A. Ceccacci, L. Pacini, F. Narjes, N. Gennari, M. Bisbocci, I. Incitti, L. Orsatti, S. Harper, I. Stansfield, M. Rowley, R. De Francesco, G. Migliaccio, J. Virol. 2003, 77, 13225.
- 50 S. Reich, R. P. Golbik, R. Geissler, H. Lilie, S. E. Behrens, J. Biol. Chem. 2010, 285, 13685.
- 51 C. Ferrer-Orta, A. Arias, C. Escarmis, N. Verdaguer, Curr. Opin. Struct. Biol. 2006, 16, 27.
- 52 K. H. Choi, Adv. Exp. Med. Biol. 2012, 726, 267.
- 53 S. M. McDonald, WIREs RNA 2013, 4, 351.
- 54 C. E. Cameron, I. M. Moustafa, J. J. Arnold, Curr. Opin. Struct. Biol. 2009, 19, 768.
- 55 G. S. Shatskaya, T. M. Dmitrieva, Biochemistry (Mosc) 2013, 78, 231.
- 56 E. Sesmero, I. F. Thorpe, Viruses 2015, 7, 3974.
- 57 R. C. Durk, K. Singh, C. A. Cornelison, D. K. Rai, K. B. Matzek, M. D. Leslie, E. Schafer, B. Marchand, A. Adedeji, E. Michailidis, C. A. Dorst, J. Moran, C. Pautler, L. L. Rodriguez, M. A. McIntosh, E. Rieder, S. G. Sarafianos, PLoS One 2010, 5, e15049.
- 58 H. Malet, N. Masse, B. Selisko, J. L. Romette, K. Alvarez, J. C. Guillemot, H. Tolou, T. L. Yap, S. Vasudevan, J. Lescar, B. Canard, Antivir. Res. 2008, 80, 23.
- 59 D. Manvar, I. Kucukguzel, G. Erensoy, E. Tatar, G. Deryabasogullari, H. Reddy, T. T. Talele, O. Cevik, N. Kaushik-Basu, Biochem. Biophys. Res. Commun. 2016, 469, 743.
- 60 F. Yokokawa, S. Nilar, C. G. Noble, S. P. Lim, R. Rao, S. Tania, G. Wang, G. Lee, J. Hunziker, R. Karuna, U. Manjunatha, P. Y. Shi, P. W. Smith, J. Med. Chem. 2016, 59, 3935.
- 61 J. A. Brown, M. V. Espiritu, J. Abraham, I. F. Thorpe, Virus Res. 2016, 222, 80.
- 62 P. Gong, O. B. Peersen, Proc. Natl. Acad. Sci. USA 2010, 107, 22505.
- 63 D. F. Zamyatkin, F. Parra, J. M. M. Alonso, D. A. Harki, B. R. Peterson, P. Grochulski, K. K. S. Ng, J. Biol. Chem. 2008, 283, 7705.
- 64 B. Shu, P. Gong, Proc. Natl. Acad. Sci. USA 2016, 113, E4005.
- 65 O. Nyanguile, B. Devogelaere, L. Vijgen, W. Van den Broeck, F. Pauwels, M. D. Cummings, H. L. De Bondt, A. M. Vos, J. M. Berke, O. Lenz, G. Vandercruyssen, K. Vermeiren, W. Mostmans, P. Dehertogh, F. Delouvroy, S. Vendeville, K. VanDyck, K. Dockx, E. Cleiren, P. Raboisson, K. A. Simmen, G. C. Fanning, J. Virol. 2010, 84, 2923.
- 66 D. Deredge, J. W. Li, K. A. Johnson, P. L. Wintrode, J. Biol. Chem. 2016, 291, 10078.
- 67 J. W. Li, K. A. Johnson, J. Biol. Chem. 2016, 291, 10067.