Optimal allosteric stabilization sites using contact stabilization analysis
Corresponding Author
Alex Dickson
Department of Biochemistry & Molecular Biology and the Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
E-mail: [email protected]Search for more papers by this authorChristopher T. Bailey
Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
Search for more papers by this authorJohn Karanicolas
Department of Molecular Biosciences and Center for Computational Biology, University of Kansas, Lawrence, Kansas, 66045
Search for more papers by this authorCorresponding Author
Alex Dickson
Department of Biochemistry & Molecular Biology and the Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, 48824
E-mail: [email protected]Search for more papers by this authorChristopher T. Bailey
Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan, 48824
Search for more papers by this authorJohn Karanicolas
Department of Molecular Biosciences and Center for Computational Biology, University of Kansas, Lawrence, Kansas, 66045
Search for more papers by this authorAbstract
Proteins can be destabilized by a number of environmental factors such as temperature, pH, and mutation. The ability to subsequently restore function under these conditions by adding small molecule stabilizers, or by introducing disulfide bonds, would be a very powerful tool, but the physical principles that drive this stabilization are not well understood. The first problem lies is in choosing an appropriate binding site or disulfide bond location to best confer stability to the active site and restore function. Here, we present a general framework for predicting which allosteric binding sites correlate with stability in the active site. Using the Karanicolas–Brooks Gō-like model, we examine the dynamics of the enzyme β-glucuronidase using an Umbrella Sampling method to thoroughly sample the conformational landscape. Each intramolecular contact is assigned a score termed a “stabilization factor” that measures its correlation with structural changes in the active site. We have carried out this analysis for three different scaling strengths for the intramolecular contacts, and we examine how the calculated stabilization factors depend on the ensemble of destabilized conformations. We further examine a locally destabilized mutant of β-glucuronidase that has been characterized experimentally, and show that this brings about local changes in the stabilization factors. We find that the proximity to the active site is not sufficient to determine which contacts can confer active site stability. © 2016 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
jcc24517-sup-0001-suppinfo1.pdf1.6 MB |
Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 T. J. Kamerzell, R. Esfandiary, S. B. Joshi, C. R. Middaugh, D. B. Volkin, Adv. Drug Deliv. Rev. 2011, 63, 1118.
- 2 S. J. Prestrelski, N. Tedeschi, T. Arakawa, J. F. Carpenter, Biophys. J. 1993, 65, 661.
- 3 B. A. Foster, H. A. Coffey, M. J. Morin, F. Rastinejad, Science (New York, N.Y.) 1999, 286, 2507.
- 4 T. M. Rippin, V. J. N. Bykov, S. M. V. Freund, G. Selivanova, K. G. Wiman, A. R. Fersht, Oncogene 2002, 21, 2119.
- 5 S. L. Adamski-Werner, S. K. Palaninathan, J. C. Sacchettini, J. W. Kelly, J. Med. Chem. 2004, 47, 355.
- 6 R. L. Wiseman, S. M. Johnson, M. S. Kelker, T. Foss, I. A. Wilson, J. W. Kelly, J. Am. Chem. Soc. 2005, 127, 5540.
- 7 P. Block, N. Weskamp, A. Wolf, G. Klebe, Proteins 2007, 68, 170.
- 8 F. M. Boeckler, A. C. Joerger, G. Jaggi, T. J. Rutherford, D. B. Veprintsev, A. R. Fersht, Proc. Natl. Acad. Sci. USA 2008, 105, 10360.
- 9 S. Connelly, S. Choi, S. M. Johnson, J. W. Kelly, I. A. Wilson, Curr. Opin. Struct. Biol. 2010, 20, 54.
- 10 X. Liu, R. Wilcken, A. C. Joerger, I. S. Chuckowree, J. Amin, J. Spencer, A. R. Fersht, Nucleic Acids Res. 2013, 41, 6034.
- 11 M. W. Pantoliano, E. C. Petrella, J. D. Kwasnoski, V. S. Lobanov, J. Myslik, E. Graf, T. Carver, E. Asel, B. A. Springer, P. Lane, F. R. Salemme, J. Biomol. Screen. 2001, 6, 429.
- 12 D. Matulis, J. K. Kranz, F. R. Salemme, M. J. Todd, Biochemistry 2005, 44, 5258.
- 13 R. Dai, T. W. Geders, F. Liu, S. W. Park, D. Schnappinger, C. C. Aldrich, B. C. Finzel, J. Med. Chem. 2015, 58, 5208.
- 14 M. Levitt, A. Warshel, Nature 1975, 253, 694.
- 15 A. Liwo, S. Ołdziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, H. A. Scheraga, J. Comput. Chem. 1997, 18, 849.
- 16 J. Karanicolas, C. L. Brooks, III, J. Mol. Biol. 2003, 334, 309.
- 17 L. Monticelli, S. K. Kandasamy, X. Periole, R. G. Larson, D. P. Tieleman, S. J. Marrink, J. Chem. Theory Comput. 2008, 4, 819.
- 18 S. M. Gopal, S. Mukherjee, Y. M. Cheng, M. Feig, Proteins Struct. Funct. Bioinf. 2010, 78, 1266.
- 19 J. Feng, N. G. Walter, C. L. Brooks, J. Am. Chem. Soc. 2011, 133, 4196.
- 20 R. D. Hills, C. L. Brooks, III, Int. J. Mol. Sci. 2009, 10, 889.
- 21 J. Karanicolas, C. L. Brooks, III, Protein Sci. 2002, 11, 2351.
- 22 R. D. Hills, C. L. Brooks, J. Mol. Biol. 2008, 382, 485.
- 23 R. D. Hills, S. V. Kathuria, L. A. Wallace, I. J. Day, C. L. Brooks, III, C. R. Matthews, J. Mol. Biol. 2010, 398, 332.
- 24 L. S. Ahlstrom, A. Dickson, C. L. Brooks, III, J. Phys. Chem. B 2013, 117, 13219.
- 25 L. S. Ahlstrom, S. M. Law, A. Dickson, C. L. Brooks, III, J. Mol. Biol. 2015, 427, 1670.
- 26 A. Dickson, L. S. Ahlstrom, C. L. Brooks, III, J. Comput. Chem. 2015, 37, 587.
- 27 S. Park, T. Kim, W. Im, Phys. Rev. Lett. 2012, 108, 108102.
- 28 S. Jain, W. B. Drendel, Z. W. Chen, F. S. Mathews, W. S. Sly, J. H. Grubb, Nat. Struct. Biol. 1996, 3, 375.
- 29 K. Deckert, S. J. Budiardjo, L. C. Brunner, S. Lovell, J. Karanicolas, J. Am. Chem. Soc. 2012, 134, 10055.
- 30 Y. Xia, N. Diprimio, T. R. Keppel, B. Vo, K. Fraser, K. P. Battaile, C. Egan, C. Bystroff, S. Lovell, D. D. Weis, A. J. Christopher, K. John, J. Am. Chem. Soc. 2013, 135, 18840.
- 31 D. De Sancho, R. B. Best, Mol. BioSyst. 2012, 8, 256.
- 32 B. Brooks, C. Brooks, III, A. MacKerell, Jr., L. Nilsson, R. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov,, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaeffer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D.M. York, M. Karplus, J. Comput. Chem. 2009, 30, 1545.
- 33 J. M. Torrie, J. P. Valleau, J. Comput. Phys. 1977, 23, 187.
- 34 F. B. Sheinerman, C. L. Brooks, III, J. Mol. Biol. 1998, 278, 439.
- 35 A. Dickson, M. Maienschein-Cline, A. Tovo-Dwyer, J. R. Hammond, A. R. Dinner, J. Chem. Theory Comput. 2011, 7, 2710.
- 36 S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, P. A. Kollman, J. Comput. Chem. 1992, 13, 1011.
- 37 B. Roux, Comput. Phys. Commun. 1995, 91, 275.
- 38 A. Grossfield “WHAM: the weighted histogram analysis method”, version 2.0.9. Available at: http://membrane.urmc.rochester.edu/content/wham
- 39 D. L. Mobley, A. P. Graves, J. D. Chodera, A. C. McReynolds, B. K. Shoichet, K. A. Dill, J. Mol. Biol. 2007, 371, 1118.
- 40 K. A. Beauchamp, G. R. Bowman, T. J. Lane, L. Maibaum, I. S. Haque, V. S. Pande, J. Chem. Theory Comput. 2011, 7, 3412.
- 41 A. Panjkovich, X. Daura, BMC Bioinf. 2012, 13, 273.
- 42 B. Kav, M. Öztürk, A. Kabakçιolu, Proteins Struct. Funct. Bioinf. 2016, 84, 655.
- 43 N. Ota, D. A. Agard, J. Mol. Biol. 2005, 351, 345.
- 44 R. Kalescky, H. Zhou, J. Liu, P. Tao, PLoS Comput. Biol. 2016, 12, e1004893.
- 45 F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks, C. Sander, R. Zecchina, J. N. Onuchic, T. Hwa, M. Weigt, Proc. Natl. Acad. Sci. USA 2011, 108, E1293.
- 46 A. Dickson, C. L. Brooks, III, J. Phys. Chem. B 2014, 118, 3532.
- 47 C. F. Abrams, E. Vanden-Eijnden, Proc. Natl. Acad. Sci. USA 2010, 107, 4961.