Three-dimensional spatial reconstruction of coronary arteries based on fusion of intravascular optical coherence tomography and coronary angiography
Yanan Zhu
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorFengyu Zhu
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorCorresponding Author
Zhenyang Ding
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Correspondence
Zhenyang Ding, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
Email: [email protected]
Search for more papers by this authorKuiyuan Tao
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorTianduo Lai
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorHao Kuang
Nanjing Forssmann Medical Technology Co., Nanjing, Jiangsu, China
Search for more papers by this authorPeidong Hua
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorMingjian Shang
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorJingqi Hu
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorYin Yu
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorTiegen Liu
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorYanan Zhu
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorFengyu Zhu
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorCorresponding Author
Zhenyang Ding
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Correspondence
Zhenyang Ding, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
Email: [email protected]
Search for more papers by this authorKuiyuan Tao
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorTianduo Lai
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorHao Kuang
Nanjing Forssmann Medical Technology Co., Nanjing, Jiangsu, China
Search for more papers by this authorPeidong Hua
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorMingjian Shang
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorJingqi Hu
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorYin Yu
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorTiegen Liu
School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, China
Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, China
Search for more papers by this authorYanan Zhu and Fengyu Zhu contributed equally to this study.
Funding information: National Instrumentation Program, Grant/Award Number: 2013YQ030915; China Postdoctoral Science Foundation, Grant/Award Numbers: 2015M580199, 2016T90205; National Key Research and Development Program, Grant/Award Numbers: 2019YFC0120701, 2019YFC0120703; National Natural Science Foundation of China, Grant/Award Numbers: 61505138, 61635008, 61735011, 61975147; Tianjin Science and Technology Support Plan Program Funding, Grant/Award Number: 16JCQNJC01800
Abstract
We present a three-dimensional (3D) spatial reconstruction of coronary arteries based on fusion of intravascular optical coherence tomography (IVOCT) and digital subtraction angiography (DSA). Centerline of vessel in DSA images is exacted by multi-scale filtering, adaptive segmentation, morphology thinning and Dijkstra's shortest path algorithm. We apply the cross-correction between lumen shapes of IVOCT and DSA images and match their stenosis positions to realize co-registration. By matching the location and tangent direction of the vessel centerline of DSA images and segmented lumen coordinates of IVOCT along pullback path, 3D spatial models of vessel lumen are reconstructed. Using 1121 distinct positions selected from eight vessels, the correlation coefficient between 3D IVOCT model and DSA image in measuring lumen radius is 0.94% and 97.7% of the positions fall within the limit of agreement by Bland–Altman analysis, which means that the 3D spatial reconstruction IVOCT models and DSA images have high matching level.
CONFLICTS OF INTEREST
The authors declare no potential conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
No data are available.
REFERENCE
- 1G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W.-Y. Oh, L. A. Bartlett, M. Rosenberg, B. E. Bouma, JACC Cardiovasc. Imaging 2008, 1, 752.
- 2H. Yabushita, B. E. Bourna, S. L. Houser, T. Aretz, I. K. Jang, K. H. Schlendorf, C. R. Kauffman, M. Shishkov, D. H. Kang, E. F. Halpern, G. J. Tearney, Circulation 2002, 106, 1640.
- 3B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. D. Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, I. K. Jang, Heart 2003, 89, 317.
- 4I.-K. Jang, B. E. Bouma, D.-H. Kang, S.-J. Park, S.-W. Park, K.-B. Seung, K.-B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, G. J. Tearney, J. Am. Coll. Cardiol. 2002, 39, 604.
- 5G. J. Tearney, Eur. Heart J. 2018, 39, 3685.
- 6G. J. Ughi, T. Adriaenssens, W. Desmet, J. D'hooge, Biomed. Opt. Express 2012, 3, 3291.
- 7D. De Cock, S. Tu, G. J. Ughi, T. Adriaenssens, Curr. Cardiovasc. Imaging Rep. 2014, 7, 9290.
10.1007/s12410-014-9290-0 Google Scholar
- 8B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R.-J. M. van Geuns, E. Regar, P. W. Serruys, Int. J. Cardiol. 2011, 151, 103.
- 9Y. Cao, K. Cheng, X. Qin, Q. Yin, J. Li, R. Zhu, W. Zhao, Comput. Math. Methods Med. 2017, 2017, 4710305.
- 10J. Shiju, A. Asif, A. David, J. Med. Imaging 2016, 3, 1.
- 11N. Bruining, K. Sihan, J. Ligthart, S. D. Winter, and E. Regar, " Automated three-dimensional detection of intracoronary stent struts in optical coherence tomography images, in 2011 Computing in Cardiology(2011), pp. 221–224.
- 12Z. Wang, D. Chamie, H. G. Bezerra, H. Yamamoto, J. Kanovsky, D. L. Wilson, M. A. Costa, A. M. Rollins, Biomed. Opt. Express 2012, 3, 1413.
- 13A. Akbar, T. S. Khwaja, A. Javaid, J.-s. Kim, J. Ha, Biomed. Opt. Express 2019, 10, 5325.
- 14Y. Yan Ling, T. Li Kuo, A. M. Robert, C. Kok Han, L. Yih Miin, J. Biomed. Opt. 2017, 22, 1.
- 15P. Wang, O. Ecabert, T. Chen, M. Wels, J. Rieber, M. Ostermeier, D. Comaniciu, IEEE Trans. Med. Imaging 2013, 32, 2238.
- 16L. M. Ellwein, H. Otake, T. J. Gundert, B.-K. Koo, T. Shinke, Y. Honda, J. Shite, J. F. LaDisa, Cardiovasc. Eng. Technol. 2011, 2, 212.
10.1007/s13239-011-0047-5 Google Scholar
- 17H. Otake, J. Shite, J. Ako, T. Shinke, Y. Tanino, D. Ogasawara, T. Sawada, N. Miyoshi, H. Kato, B.-K. Koo, Y. Honda, P. J. Fitzgerald, K.-i. Hirata, JACC Cardiovasc. Interv. 2009, 2, 459.
- 18G. De Santis, P. Mortier, M. De Beule, P. Segers, P. Verdonck, B. Verhegghe, Med. Biol. Eng. Comput. 2010, 48, 371.
- 19N. Bruining, S. de Winter, P. W. Serruys, Cardiol. Clin. 2009, 27, 531.
- 20S. Carlier, R. Didday, T. Slots, P. Kayaert, J. Sonck, M. El-Mourad, N. Preumont, D. Schoors, G. Van Camp, Cardiovasc. Revasc. Med. 2014, 15, 226.
- 21S. Tu, N. R. Holm, G. Koning, Z. Huang, J. H. C. Reiber, Int. J. Cardiovasc. Imaging 2011, 27, 197.
- 22S. Tu, L. Xu, J. Ligthart, B. Xu, K. Witberg, Z. Sun, G. Koning, J. H. C. Reiber, E. Regar, Int. J. Cardiovasc. Imaging 2012, 28, 1315.
- 23P. Wang, T. Chen, O. Ecabert, S. Prummer, M. Ostermeier, D. Comaniciu, Image-Based Device Tracking for the Co-registration of Angiography and Intravascular Ultrasound Images. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011 (Eds: G. Fichtinger, A. Martel, T. Peters), Springer, Berlin, Heidelberg 2011, p. 161.
10.1007/978-3-642-23623-5_21 Google Scholar
- 24I. O. Andrikos, A. I. Sakellarios, P. K. Siogkas, G. Rigas, T. P. Exarchos, L. S. Athanasiou, A. Karanasos, K. Toutouzas, D. Tousoulis, L. K. Michalis, and D. I. Fotiadis, " A novel hybrid approach for reconstruction of coronary bifurcations using angiography and OCT, in 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)(2017), pp. 588–591.
- 25H. Zhao, B. He, Z. Ding, K. Tao, T. Lai, H. Kuang, R. Liu, X. Zhang, Y. Zheng, J. Zheng, T. Liu, IEEE Access 2019, 7, 88859.
- 26A. F. Frangi, W. J. Niessen, K. L. Vincken, M. A. Viergever, Multiscale vessel enhancement filtering. in Medical Image Computing and Computer-Assisted Intervention — MICCAI'98 (Eds: W. M. Wells, A. Colchester, S. Delp), Springer, Berlin, Heidelberg 1998, p. 130.
- 27N. Sang, H. Li, W. Peng, T. Zhang, Image Vision Comput. 2007, 25, 1263.
- 28L. Lam, S. Lee, C. Y. Suen, IEEE Trans Pattern Anal Mach Intell 1992, 14, 869.
- 29E. W. Dijkstra, Numer Math 1959, 1, 269.
10.1007/BF01386390 Google Scholar
- 30R. Fabbri, L. D. F. Costa, J. C. Torelli, O. M. Bruno, ACM Comput. Surv. 2008, 40, 2:2-2:44.
- 31C. R. Maurer, Q. Rensheng, V. Raghavan, IEEE Trans Pattern Anal Mach Intell 2003, 25, 265.
- 32J. C. H. Schuurbiers, N. G. Lopez, J. Ligthart, F. J. H. Gijsen, J. Dijkstra, P. W. Serruys, A. F. Van der Steen, J. J. Wentzel, Catheter. Cardiovasc. Interv. 2009, 73, 620.
- 33M. J. Boogers, A. Broersen, J. E. van Velzen, F. R. de Graaf, H. M. El-Naggar, P. H. Kitslaar, J. Dijkstra, V. Delgado, E. Boersma, A. de Roos, J. D. Schuijf, M. J. Schalij, J. H. C. Reiber, J. J. Bax, J. W. Jukema, Eur. Heart J. 2012, 33, 1007.
- 34J. Kweon, S.-J. Kang, Y.-H. Kim, J.-G. Lee, S. Han, H. Ha, D. H. Yang, J.-W. Kang, T.-H. Lim, O. Kwon, J.-M. Ahn, P. H. Lee, D.-W. Park, S.-W. Lee, C. W. Lee, S.-W. Park, S.-J. Park, Eur. Heart J. 2018, 19, 1134.
- 35L. Athanasiou, F. R. Nezami, M. Z. Galon, A. C. Lopes, P. A. Lemos, J. M. d. l. T. Hernandez, E. Ben-Assa, E. R. Edelman, IEEE J. Biomed. Health Inform. 2018, 22, 1168.
- 36G. Koning, E. Hekking, J. S. Kemppainen, G. A. Richardson, M. T. Rothman, J. H. C. Reiber, Catheter. Cardiovasc. Interv. 2001, 52, 334.
- 37A. Arbab-Zadeh, J. Texter, K. M. Ostbye, K. Kitagawa, J. Brinker, R. T. George, J. M. Miller, J. C. Trost, R. A. Lange, J. A. C. Lima, A. C. Lardo, Heart 2010, 96, 1358.
- 38P. A. Dorsaz, P. A. Doriot, L. Dorsaz, W. Rutishauser, Physiol. Meas. 1997, 18, 277.