Cetuximab-conjugated nanodiamonds drug delivery system for enhanced targeting therapy and 3D Raman imaging
Dandan Li
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
University of Chinese Academy of Sciences, 100049 PR China
Search for more papers by this authorXin Chen
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
University of Chinese Academy of Sciences, 100049 PR China
School of Pharmaceutical Sciences, Peking University, 100191 PR China
Search for more papers by this authorHong Wang
School of Pharmaceutical Sciences, Peking University, 100191 PR China
Search for more papers by this authorJie Liu
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
Search for more papers by this authorMeiling Zheng
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
Search for more papers by this authorYang Fu
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
University of Chinese Academy of Sciences, 100049 PR China
Search for more papers by this authorCorresponding Author
Yuan Yu
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
Search for more papers by this authorCorresponding Author
Jinfang Zhi
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
Search for more papers by this authorDandan Li
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
University of Chinese Academy of Sciences, 100049 PR China
Search for more papers by this authorXin Chen
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
University of Chinese Academy of Sciences, 100049 PR China
School of Pharmaceutical Sciences, Peking University, 100191 PR China
Search for more papers by this authorHong Wang
School of Pharmaceutical Sciences, Peking University, 100191 PR China
Search for more papers by this authorJie Liu
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
Search for more papers by this authorMeiling Zheng
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
Search for more papers by this authorYang Fu
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
University of Chinese Academy of Sciences, 100049 PR China
Search for more papers by this authorCorresponding Author
Yuan Yu
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
Search for more papers by this authorCorresponding Author
Jinfang Zhi
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190 PR China
Search for more papers by this authorAbstract
In this study, a multicomponent nanodiamonds (NDs)-based targeting drug delivery system, cetuximab-NDs-cisplatin bioconjugate, combining both specific targeting and enhanced therapeutic efficacy capabilities, is developed and characterized. The specific targeting ability of cetuximab-NDs-cisplatin system on human liver hepatocellular carcinoma (HepG2) cells is evaluated through epidermal growth factor receptor (EGFR) blocking experiments, since EGFR is over-expressed on HepG2 cell membrane. Besides, cytotoxic evaluation confirms that cetuximab-NDs-cisplatin system could significantly inhibit the growth of HepG2 cells, and the therapeutic activity of this system is proven to be better than that of both nonspecific NDs-cisplatin conjugate and specific EGF-NDs-cisplatin conjugate. Furthermore, a 3-dimensional (3D) Raman imaging technique is utilized to visualize the targeting efficacy and enhanced internalization of cetuximab-NDs-cisplatin system in HepG2 cells, using the NDs existing in the bioconjugate as Raman probes, based on the characteristic Raman signal of NDs at 1332 cm−1. These advantageous properties of cetuximab-NDs-cisplatin system propose a prospective imaging and treatment tool for further diagnostic and therapeutic purposes.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
jbio201700011-sup-0001-author-biographies.pdf124.4 KB | Supplementary |
jbio201700011-sup-0001-figure_S1.jpg3.4 MB | Supplementary |
jbio201700011-sup-0001-figure_S2.jpg4.9 MB | Supplementary |
jbio201700011-sup-0001-figure_S3.jpg6.9 MB | Supplementary |
jbio201700011-sup-0001-misc_information.pdf395.1 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. C. Alley, N. M. Okeley, and P. D. Senter, Curr Opin Chem Biol 14, 529–537 (2010).
- 2F. Fay and C. J. Scott, Immunotherapy 3, 381–394 (2011).
- 3D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, Nat Nanotechnol 2, 751–760 (2007).
- 4M. Ferrari, Nat Rev Cancer 5, 161–171 (2005).
- 5K. Riehemann, S. W. Schneider, T. A. Luger, B. Godin, M. Ferrari, and H. Fuchs, Angew Chem Int Ed Engl 48, 872–897 (2009).
- 6P. Alivisatos, Nat Biotechnol 22, 47–52 (2004).
- 7Y. Jin, C. Jia, S. W. Huang, M. O'Donnell and X. Gao, Nat Commun 1, 41 (2010).
- 8A. S. Paraskar, S. Soni, K. T. Chin, P. Chaudhuri, K. W. Muto, J. Berkowitz, M. W. Handlogten, N. J. Alves, B. Bilgicer, D. M. Dinulescu, R. A. Mashelkar, and S. Sengupta, Proc Natl Acad Sci U S A 107, 12435–12440 (2010).
- 9M. E. Davis, J. E. Zuckerman, C. H. J. Choi, D. Seligson, A. Tolcher, C. A. Alabi, Y. Yen, J. D. Heidel, and A. Ribas, Nature 464, 1067–1070 (2010).
- 10D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, Angew Chem Int Ed 49, 3280–3294 (2010).
- 11Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, Nat Protoc 4, 1372–1382 (2009).
- 12D. Wang, Y. Li, Z. Tian, R. Cao, and B. Yang, Ther Deliv 5, 511–524 (2014).
- 13B. Stella, S. Arpicco, M. T. Peracchia, D. Desmaele, J. Hoebeke, M. Renoir, J. D'Angelo, L. Cattel, and P. Couvreur, J Pharm Sci 89, 1452–1464 (2000).
- 14Z. Liu, Z. Guo, H. Zhong, X. Qin, M. Wan, and B. Yang, Phys Chem Chem Phys 15, 2961–2966 (2013).
- 15L. J. Pike, Biochim Biophys Acta 1746, 260–73 (2005).
- 16C. Messa, F. Russo, M. G. Caruso, and A. Di Leo, Acta Oncol 37, 285–289 (1998).
- 17M. J. Overman and P. M. Hoff, Dis Colon Rectum 50, 1259–1270 (2007).
- 18A. Kriete, E. Papazoglpo, B. Edrissi, H. Pais, and K. Pourrezaei, J Microsc 222, 22–27 (2006).
- 19J. J. Laskin and A. B. Sandler, Cancer Treat Rev 30, 1–17 (2004).
- 20A. A. Bhirde, V. Patel, J. Gavard, G. F. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, ACS Nano 3, 307–316 (2009).
- 21C. L. Tseng, T. W. Wang, G. C. Dong, Y. H. S. Wu, T. H. Young, M. J. Shieh, P. J. Lou, and F. H. Lin, Biomaterials 28, 3996–4005 (2007).
- 22N. I. Goldstein, M. Prewett, K. Zuklys, P. Rockwell, and J. Mendelsohn, Clin Cancer Res 1, 1311–1318 (1995).
- 23Y. S. Cho, T. J. Yoon, E. S. Jang, K. S. Hong, S. Y. Lee, O. R. Kim, C. Park, Y. J. Kim, G. C. Yi, and K. Chang, Cancer Lett 299, 63–71 (2010).
- 24E. Portnoy, S. Lecht, P. Lazarovici, D. Danino, and S. Magdassi, Nanomedicine NLM 7, 480–488 (2011).
- 25F. Ciardiello and G. Tortora, N Engl J Med 358, 1160–1174 (2008).
- 26J. A. Bonner, K. P. Reisch, H. Q. Trummell, F. Robert, R. F. Meredith, S. A. Spencer, D. J. Buchsbaum, M. N. Saleh, M. A. Stackhouse, A. F. LoBuglio, G. E. Peters, W. R. Carroll, and H. W. Waksal, J Clin Oncol 18, 47 s–53 s (2000).
- 27S. M. Huang, J. M. Bock, and P. M. Harari, Cancer Res 59, 1935–3940 (1999).
- 28S. Lorenzen, T. Schuster, R. Porschen, S. E. Al-Batan, R. Hofheinz, P. T. Patience, M. Moehler, P. Grabowski, D. Arnold, T. Greten, L. Muller, N. Rothling, C. Peschel, R. Langer, and F. Lordick, Ann Oncol 20, 1667–1673 (2009).
- 29M. Merlano, E. Russi, M. Benasso, R. Corvo, I. Colantonio, R. V. Taglianti, V. Vigo, A. Bacigalupo, G. Numico, N. Crosetto, R. Vitiello, S. Violante, and O. Garrone, Ann Oncol 22, 712–717 (2011).
- 30J. Baselga, P. Gomez, R. Greil, S. Braga, M. A. Climent, A. M. Wardley, B. Kaufman, S. M. Stemmer, A. Pego, A. Chan, J. C. Goeminne, M. P. Graas, M. J. Kennedy, E. M. C. Gil, A. Schneeweiss, A. Zubel, J. Groos, H. Melezinkova, and A. Awada, J Clin Oncol 31, 2586–2592 (2013).
- 31S. D. Richard, T. C. Krivak, S. Beriwal, and K. K. Zorn, Int J Gynecol Cancer 18, 1132–1135 (2008).
- 32B. Rosenberg, L. V. Camp, J. E. Trosko, and V. H. Mansour, Nature 222, 385–386 (1969).
- 33J. Reedijk, Proc Natl Acad Sci U S A 100, 3611–3616 (2003).
- 34B. Guan, F. Zou, and J. F. Zhi, Small 6, 1514–1519 (2010).
- 35B. J. Corden, R. L. Fine, R. F. Ozols, and J. M. Collins, Cancer Chemoth Pharm 14, 38–41 (1985).
- 36V. Pinzani, F. Bressolle, I. J. Haug, M. Galtier, J. P. Blayac, and P. Balmes, Cancer Chemoth Pharm 35, 1–9 (1994).
- 37N. J. Yang, J.S. Foord, and X. Jiang, Carbon 99, 90–110 (2016).
- 38D. D. Li, X. Chen, H. Wang, Y. Yu, J. Liu, Y. Wang, J. H. Zhang, M. L. Zheng, and J. F. Zhi, RSC Advances 7, 12835–12841 (2017).
- 39J. Gong, N. Steinsultz, and M. Ouyang, Nat Commun 7, 11820 (2016).
- 40K. Fox, P. A. Tran, D. W. M. Lau, T. Ohshima, A. D. Greentree, and B. C. Gibson, Mater Lett 185, 185–188 (2016).
- 41A. M. Schrand, H. Huang, C. Carlson, J. J. Schlager, E. Osawa, S. M. Hussain, S. M. Hussain, and L. M. Dai, J Phys Chem B 111, 2–7 (2007).
- 42V. Vaijayanthimala, Y. K. Tzeng, H. C. Chang, and C. L. Li, Nanotechnology 20, 425103 (2009).
- 43V. S. Bondar’ and A.P. Puzyr’, Phys Solid State 46, 716–719 (2004).
- 44Z. Q. Wang, Z. M. Tian, Y. Dong, L. Li, L. Tian, Y. Q. Li, and B. S. Yang, Diam Relat Mater 58, 84–93 (2015).
- 45A. D. Salaam, P. Hwang, R. Mcintosh, H. N. Green, H. W. Jun, and D. Dean, Beilstein J Nanotech 5, 937–945 (2014).
- 46H. Huang, E. Pierstorff, E. Osawa, and D. Ho, Nano Lett 7, 3305–3314 (2007).
- 47J. I. Chao, E. Perevedentseva, P. H. Chung, K. K. Liu, C. Y. Cheng, C. C. Chang, and C. C. Cheng, Biophys J 93, 2199–2208 (2007).
- 48E. Perevedentseva, S. F. Hong, K. J. Huang, I. T. Chiang, C. Y. Lee, Y. T. Tseng, and C. L. Cheng, J Nanopart Res 15, 1834 (2013).
- 49K. Majzner, A. Kaczor, T. N. Kachamakova, A. Fedorowicz, S. Chlopicki, and M. Baranska, Analyst 138, 603–610 (2013).
- 50S. McAughtrie, K. Lau, K. Faulds, and D. Graham, Chem Sci 4, 3566–3572 (2013).
- 51E. Perevedentseva, Y. C. Lin, M. Jani, and C. L. Cheng, Nanomedicine 8, 2041–2060 (2013).
- 52X. Chen, H. Wang, D. D. Li, Y. Yu, and J. F. Zhi, Phys Status Solidi A 213, 2131–2137 (2016).
- 53S. A. Curley, P. Cherukuri, K. Briggs, C.R. Patra, M. Upton, E. Dolson, and P. Mukherjee, J Exp Ther Oncol 7, 313–326 (2008).
- 54K. Löw, M. Wacker, S. Wagner, K. Langer, and H. V. Briesen, Nanomedicine: NBM 7, 454–463 (2011).
- 55X. Chen, D. D. Li, H. Wang, Y. Y. Jiao, H. Wang, Y. Yu, and J. F. Zhi, RSC Advances 6, 44543–44551 (2016).
- 56J. M. Berlin, T. T. Pham, D. Sano, K. A. Mohamedali, D. C. Marcano, J. N. Myers, and J. M. Tour, ACS Nano 5, 6643–6650 (2011).
- 57A. Huether, M. Hopfner, V. Baradari, D. Schuppan, and H. Scherubl, Biochem Pharmacol 70, 1568–1578 (2005).
- 58M. Tania, M.A. Khan, and J. Fu, Tumour Biol 35, 7335–7342 (2014).
- 59Z. Fan, Y. Lu, X. Wu, and J. Mendelsohn, J Biol Chem 269, 27595 (1994).
- 60M. Prewett, P. Rockwell, R. F. Rockwell, N. A. Giorgio, J. Mendelsohn, H. I. Scher and N. I. Goldstein, J Immunother Emphasis Tumor Immunol 19, 419–427 (1996).
- 61H. D. Wang, Q. Yang, and C.H. Niu, Diam Relat Mater 19, 441–444 (2010).