Assessing the risk of skin damage due to femtosecond laser irradiation
Frank Fischer
Beiersdorf AG, Unnastraße 48, 20245 Hamburg, Germany
Search for more papers by this authorBeate Volkmer
Dermatologisches Zentrum Buxtehude, Am Krankenhaus 1, 21614 Buxtehude, Germany
Search for more papers by this authorStefan Puschmann
Beiersdorf AG, Unnastraße 48, 20245 Hamburg, Germany
Search for more papers by this authorRüdiger Greinert
Dermatologisches Zentrum Buxtehude, Am Krankenhaus 1, 21614 Buxtehude, Germany
Search for more papers by this authorEckhard Breitbart
Dermatologisches Zentrum Buxtehude, Am Krankenhaus 1, 21614 Buxtehude, Germany
Search for more papers by this authorJürgen Kiefer
Strahlenzentrum, University Gießen, Leihgesterner Weg 217, 35392 Gießen, Germany
Search for more papers by this authorRoger Wepf
Beiersdorf AG, Unnastraße 48, 20245 Hamburg, Germany
Search for more papers by this authorFrank Fischer
Beiersdorf AG, Unnastraße 48, 20245 Hamburg, Germany
Search for more papers by this authorBeate Volkmer
Dermatologisches Zentrum Buxtehude, Am Krankenhaus 1, 21614 Buxtehude, Germany
Search for more papers by this authorStefan Puschmann
Beiersdorf AG, Unnastraße 48, 20245 Hamburg, Germany
Search for more papers by this authorRüdiger Greinert
Dermatologisches Zentrum Buxtehude, Am Krankenhaus 1, 21614 Buxtehude, Germany
Search for more papers by this authorEckhard Breitbart
Dermatologisches Zentrum Buxtehude, Am Krankenhaus 1, 21614 Buxtehude, Germany
Search for more papers by this authorJürgen Kiefer
Strahlenzentrum, University Gießen, Leihgesterner Weg 217, 35392 Gießen, Germany
Search for more papers by this authorRoger Wepf
Beiersdorf AG, Unnastraße 48, 20245 Hamburg, Germany
Search for more papers by this authorAbstract
We irradiated freshly excised skin biopsies with four irradiation regimes usually taken for multiphoton imaging. If there is any skin damaging, it is mainly an effect similar to the damaging effects of UV-irradiation. Using fluorescent antibodies against cyclobutane-pyrimidin-dimers (CPDs) in combination with immuno-fluorescence image analysis we quantitatively compared fs-irradiation effects with UV-irradiation (solar simulator). Based on these results we are giving a risk assessment. The results show that multi photon imaging using the parameters described here is in the ballpark of damaging occurring from every day sun exposure. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
References
- [1] A. J. Welch and M. J. C. Van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue, Plenum Press, New York, 1995.
- [2] J. A. Valdemanis and R. L. Fork, IEEE J. Quantum Electron. OE-22, 112, 1986.
- [3] Wise, F. W., Walmskey, I. A., and Tang, C. L. Opt. Lett. 13, 129, 1988).
- [4] W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning fluorescence microscope. Science 248, 73–76, 1990).
- [5] J. A. Galbraith and M. Terasaki, Controlled Damage in Thick Specimens by Multiphoton Excitation. Mol. Biol. of the Cell 14, 1808–1817, 2003).
- [6] K. König, I. Riemann, and W. Fritzsche, Nanodissection of human chromosomes with near-infrared femtosecond laser pulses. Optics Letters 26(11), 819–821, 2001).
- [7] S. Lejnine, G. Durfee, M. Murnane, H. C. Kapteyn, V. L. Makarov, and J. P. Langmore, Crosslinking of proteins to DNA in human nuclei using a 60 femtosecond 266 nm laser. Nucleic Acids Research 27(18), 3676–3684, 1999).
- [8] K. König, Clinical Multiphoton Tomography J. Biophoton 1(1), 13–23, 2008).
- [9] W. Denk, J. H. Strickler, and W. W. Webb, Two-photon laser scanning microscopy. Science 248, 73–76, 1990).
- [10] Ch. Russmann, J. Stollhof, C. Weiss, R. Beigang, and M. Beato, Two wavelengths femotsecond laser induced DNA-protein crosslinking. Nucleic Acids Research 26(17), 3967–3970, 1998).
- [11] E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and B. J. Surleve, Wide-field optical coherence tomography: imaging of biological tissues. Appl. Opt. 41(10), 2059–64, 2002).
- [12] B. R. Masters, P. T. C. So, and E. Gratton, Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72, 2405–2412, 1997).
- [13] König, K., Liang, H., Berns, M. W., Tromberg, B. J. Cell damage by near-IR beams. Nature 377, 20–21, 1995).
- [14] K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, Pulse length dependence of cellular response to intense near infrared laser pulses in multiphoton microscopes. Opt. Lett. 24(2), 113–115, 1999).
- [15] K. König, Cellular response to laser radiation in fluorescence microscopy, in: “Methods in Cellular Imaging”, ed. by Periasamy, Oxford University Press 236–251, 2001.
- [16] D. L. Mitchell, B. Volkmer, E. W. Breitbart, M. Byrom, M. G. Lowery, and R. Greinert, Identification of a non-dividing subpopulation of mouse and human epidermal cells exhibiting high levels of persistent UV photodamage. J. Invest. Dermatol. 117, 590–595 (2001).
- [17] R. Greinert, E. W. Breitbart, and B. Volkmer, UV-Radiation Biology as Part of Cancer Research, in: Life Sciences and Radiation (Kiefer, J., ed.), pp. 139–155 (2004).
- [18] A. Van Hoffen, J. Venema, R. Meschini, A. A. van Zeeland, and L. H. Mullenders, Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6–4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. EMBO J. 14, 360–367 (1995).
- [19] F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, and R. Wepf, Risk Estimation of Skin Damage Due to Femtosecond Laser Irradiation. Journal of Biomedical Optics 13(4), 2008.
- [20] R. Greinert, O. Boguhn, D. Harder, E. W. Breitbart, D. L. Mitchell, and B. Volkmer, The dose dependence of induction and repair kinetics of UVB-induced cyclobutane-pyrimidine-dimers in human keratinocytes. Photochem. Photobiol. 72, 701–708 (2000).
- [21] B. Volkmer, D. L. Mitchell, E. W. Breitbart, and R. Greinert, Induction of persistent heavily damaged basal cells in human epidermis by solar UV-irradiation, submitted.
- [22] R. J. Morris, Keratinocyte stem cells: targets for cutaneous carcinogens. The Journal of Clinical Investigation 106, 3–8 (2000).
- [23] German radiation protection commission (SSK): Protection of the human being against UV-irradiaton in tanning bed. Information of the SSK No. 6 (2001).
- [24] F. Zölzer and J. Kiefer, Wavelength dependence of inactivation and mutation induction to 6-thioguanine-resistance in V79 Chinese Hamster fibroblasts. Photochem. Photobiol. 40, 49–53 (1984).
- [25] H. Slaper, and J. C. van der Leun, Human exposure to ultraviolet radiation: quantitative modelling of skin cancer incidence, in: Human exposure to ultraviolet radiation (W. F. Passchier, Bosnjacovic, eds.), pp. 155–171 (1987).