Estimation of mass and energy balance of glaciers using a distributed energy balance model over the Chandra river basin (Western Himalaya)
Corresponding Author
Akansha Patel
Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
Correspondence
Akansha Patel, Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India.
Email: [email protected]
Search for more papers by this authorAjanta Goswami
Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
Search for more papers by this authorJaydeo K. Dharpure
Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
Search for more papers by this authorMeloth Thamban
National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, Headland Sada, Vasco-da-Gama, Goa, India
Search for more papers by this authorParmanand Sharma
National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, Headland Sada, Vasco-da-Gama, Goa, India
Search for more papers by this authorAnil V. Kulkarni
Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, Karnataka, India
Search for more papers by this authorSunil Oulkar
National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, Headland Sada, Vasco-da-Gama, Goa, India
Search for more papers by this authorCorresponding Author
Akansha Patel
Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
Correspondence
Akansha Patel, Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 India.
Email: [email protected]
Search for more papers by this authorAjanta Goswami
Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
Search for more papers by this authorJaydeo K. Dharpure
Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
Search for more papers by this authorMeloth Thamban
National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, Headland Sada, Vasco-da-Gama, Goa, India
Search for more papers by this authorParmanand Sharma
National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, Headland Sada, Vasco-da-Gama, Goa, India
Search for more papers by this authorAnil V. Kulkarni
Divecha Centre for Climate Change, Indian Institute of Science, Bangalore, Karnataka, India
Search for more papers by this authorSunil Oulkar
National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, Headland Sada, Vasco-da-Gama, Goa, India
Search for more papers by this authorAbstract
The ongoing glacier shrinking in the Himalayan region causes a significant threat to freshwater sustainability and associated future runoff. However, data on the spatial climatic contribution of glacier retreat is scanty in this region. To investigate the spatially distributed glacier surface energy and mass fluxes, a two-dimensional mass balance model was developed and applied to the selected glaciers of the Chandra basin, in the Upper Indus Basin, Western Himalaya. This model is driven by the remote sensing data and meteorological variables measured in the vicinity of the Chandra basin for six hydrological years (October 2013 to September 2019). The modelled variables were calibrated/validated with the in-situ observation from the Himansh station in the Chandra basin. We have derived air temperature (Ta) spatially using the multivariate statistical approach, which indicates a relative error of 0.02–0.05°C with the observed data. Additionally, the relative error between the modelled and observed radiation fluxes was <10.0 W m−2. Our study revealed that the Chandra basin glaciers have been losing its mass with a mean annual mass balance of −0.59 ± 0.12 m w.e. a−1 for the six hydrological years. Results illustrated that the mean surface melt rate of the selected glaciers ranged from −5.1 to −2.5 m w.e. a−1 that lies between 4500 and 5000 m a.s.l. The study revealed that the net radiation (RN) contributes ~75% in total energy (FM) during the melt season while sensible heat (HS), latent heat (Hl), and ground heat (HG) fluxes shared 15%, 8%, and 2%, respectively. Sensitivity analysis of the energy balance components suggested that the mass balance is highly sensitive to albedo and surface radiations in the study area. Overall, the proposed model performed well for glacier-wide energy and mass balance estimation and confirms the utility of remote sensing data, which may help in reducing data scarcity in the upper reaches of the Himalayan region.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request due to privacy/ethical restrictions.
REFERENCES
- Acharya, A., & Kayastha, R. B. (2018). Mass and energy balance estimation of Yala Glacier (2011-2017), Langtang Valley, Nepal. Water (Switzerland), 11(1), 1–6. https://doi.org/10.3390/w11010006
- Allen, R., Tasumi, M., & Trezza, R. (2002). SEBAL (Surface Energy Balance Algorithms for Land)-Advanced Training and User's Manual-Idaho Implementation, Version 1.0.
- Allen, R. G. (1996). Assessing integrity of weather data for reference evapotranspiration estimation. Journal of Irrigation and Drainage Engineering, 122(2), 97–106. https://doi.org/10.1061/(ASCE)0733-9437(1996)122:2(97)
- Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration – Guidelines for computing crop water requirements – FAO irrigation and drainage paper (Vol. 56, pp. 1–15). Rome.
- Allen, S. K., Linsbauer, A., Randhawa, S. S., Huggel, C., Rana, P., & Kumari, A. (2016). Glacial lake outburst flood risk in Himachal Pradesh, India: An integrative and anticipatory approach considering current and future threats. Natural Hazards, 84(3), 1741–1763. https://doi.org/10.1007/s11069-016-2511-x
- Arnold, N. S., Willis, I. C., Sharp, M. J., Richards, K. S., & Lawson, W. J. (1996). A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland. Journal of Glaciology, 42(140), 77–89. https://doi.org/10.3189/s0022143000030549
- Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12(4), 313–329. https://doi.org/10.1016/0034-4257(82)90043-8
- ASCE–EWRI (2005). The ASCE standardized reference evapotranspiration equation. In ASCE–EWRI standardization of reference Evapo-transpiration Task Committe Rep. Reston, VA: ASCE. https://doi.org/10.1061/9780784408056
- Azam, M. F., Wagnon, P., Patrick, C., Ramanathan, A., Linda, A., & Singh, V. B. (2014). Reconstruction of the annual mass balance of Chhota Shigri glacier, Western Himalaya, India, since 1969. Annals of Glaciology, 55(66), 69–80. https://doi.org/10.3189/2014AoG66A104
- Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A. L., Favier, V., Mandal, A., & Pottakkal, J. G. (2014). Processes governing the mass balance of Chhota Shigri Glacier (Western Himalaya, India) assessed by point-scale surface energy balance measurements. The Cryosphere, 8(6), 2195–2217. https://doi.org/10.5194/tc-8-2195-2014
- Barsi, J. A., Schott, J. R., Palluconi, F. D., & Hook, S. J. (2005). Validation of a web-based atmospheric correction tool for single thermal band instruments. Earth Observing Systems X, 5882, 58820E. https://doi.org/10.1117/12.619990
10.1117/12.619990 Google Scholar
- Bastiaanssen, W. G. M. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1–2), 87–100. https://doi.org/10.1016/S0022-1694(99)00202-4
- Bastiaanssen, W. G. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., & van der Wal, T. (1998). A remote sensing surface energy balance algorithm for land (SEBAL), part 1: Formulation. Journal of Hydrology, 212–213, 213–229. https://doi.org/10.1016/S0022-1694(98)00254-6
- Beg, A. A. F., Al-Sulttani, A. H., Ochtyra, A., Jarocińska, A., & Marcinkowska, A. (2016). Estimation of evapotranspiration using SEBAL algorithm and Landsat-8 data—A case study: Tatra Mountains region. Journal of Geological Resource and Engineering, 4(6), 257–270. https://doi.org/10.17265/2328-2193/2016.06.002
10.17265/2328-2193/2016.06.002 Google Scholar
- Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., & Stoffel, M. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314. https://doi.org/10.1126/science.1215828
- Braithwaite, R. J. (1995). Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance Modelling. Journal of Glaciology, 41(137), 153–160.
- Brock, B. W., Willis, I. C., & Sharp, M. J. (2000). Measurement and parameterisation of albedo variations at Haut Glacier d'Arolla, Switzerland. Journal of Glaciology, 46(155), 675–688. https://doi.org/10.3189/172756506781828746
- Brun, F., Berthier, E., Wagnon, P., Kääb, A., & Treichler, D. (2017). A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 10(9), 668–673. https://doi.org/10.1038/ngeo2999
- Chand, P., Sharma, M. C., Bhambri, R., Sangewar, C. V., & Juyal, N. (2017). Reconstructing the pattern of the Bara Shigri Glacier fluctuation since the end of the Little Ice Age, Chandra valley, north-western Himalaya. Progress in Physical Geography, 41(5), 643–675. https://doi.org/10.1177/0309133317728017
- Chander, G., & Markham, B. (2003). Revised Landsat-5 TM radiometrie calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11 Part II), 2674–2677. https://doi.org/10.1109/TGRS.2003.818464
- Che, Y., Zhang, M., Li, Z., Wei, Y., Nan, Z., Li, H., Wang, S., & Su, B. (2019). Energy balance model of mass balance and its sensitivity to meteorological variability on Urumqi River Glacier No.1 in the Chinese Tien Shan. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-50398-4
- Cogley, J. G. (2011). Present and future states of Himalaya and Karakoram glaciers. Annals of Glaciology, 52(59), 69–73. https://doi.org/10.3189/172756411799096277
- Cresswell, M. P., Morse, A. P., Thomson, M. C., & Connor, S. J. (1999). Estimating surface air temperatures, from meteosat land surface temperatures, using an empirical solar zenith angle model. International Journal of Remote Sensing, 20(6), 1125–1132. https://doi.org/10.1080/014311699212885
- Cristóbal, J., Jiménez-Muñoz, J. C., Sobrino, J. A., Ninyerola, M., & Pons, X. (2009). Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature. Journal of Geophysical Research Atmospheres, 114(8), 1–16. https://doi.org/10.1029/2008JD010616
10.1029/2008JD010616 Google Scholar
- Dadic, R., Mott, R., Lehning, M., Carenzo, M., Anderson, B., & Mackintosh, A. (2013). Sensitivity of turbulent fluxes to wind speed over snow surfaces in different climatic settings. Advances in Water Resources, 55, 178–189. https://doi.org/10.1016/j.advwatres.2012.06.010
- Das, S., Patel, P. P., & Sengupta, S. (2016). Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: A case study of the Supin–Upper Tons Basin, Indian Himalayas. SpringerPlus, 5, 1–38. https://doi.org/10.1186/s40064-016-3207-0
- Dharpure, J. K., Patel, A., Goswami, A., & Kulkarni, A. V. (2020). Spatiotemporal snow cover characterization and its linkage with climate change over the Chenab river basin, Western Himalayas. GIScience & Remote Sensing, 57(7), 1–25. https://doi.org/10.1080/15481603.2020.1821150
- Dimri, A. P., Yasunari, T., Kotlia, B. S., Mohanty, U. C., & Sikka, D. R. (2016). Indian winter monsoon: Present and past. Earth-Science Reviews, 163, 297–322. https://doi.org/10.1016/j.earscirev.2016.10.008
- Duffie, J. A., Beckman, W. A. 1989. Solar engineering of thermal processes. Wiley Online Library. https://doi.org/10.1128/cmr.1.2.173-186.1988
- Garrison, J. D., & Adler, G. P. (1990). Estimation of precipitable water over the United States for application to the division of solar radiation into its direct and diffuse components. Solar Energy, 44(4), 225–241. https://doi.org/10.1016/0038-092X(90)90151-2
- Greuell, W. (1992). Hintereisferner, Austria: Mass-balance reconstruction and numerical modelling of the historical length variations. Journal of Glaciology, 38(129), 233–244. https://doi.org/10.1017/S0022143000003646
- Gurgiser, W., Marzeion, B., Nicholson, L., Ortner, M., & Kaser, G. (2013). Modeling energy and mass balance of shallap glacier, Peru. The Cryosphere, 7(6), 1787–1802. https://doi.org/10.5194/tc-7-1787-2013
- Haeberli, W., Schaub, Y., & Huggel, C. (2017). Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology, 293, 405–417. https://doi.org/10.1016/j.geomorph.2016.02.009
- Hock, R. (1999). A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. Journal of Glaciology, 45(149), 101–111. https://doi.org/10.3189/s0022143000003087
- Hock, R. (2003). Temperature index melt modelling in mountain areas. Journal of Hydrology, 282(1–4), 104–115. https://doi.org/10.1016/S0022-1694(03)00257-9
- Hock, R. (2005). Glacier melt: A review on processes and their modelling. Progress in Physical Geography, 29(3), 362–391.
- Hock, R., & Holmgren, B. (2005). A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. Journal of Glaciology, 51(172), 25–36. https://doi.org/10.3189/172756505781829566
- Hock, R., Bliss, A., Marzeion, B. E. N., Giesen, R. H., Hirabayashi, Y., Huss, M., Radic, V., & Slangen, A. B. A. (2019). GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections. Journal of Glaciology, 65(251), 453–467. https://doi.org/10.1017/jog.2019.22
- Huintjes, E., Neckel, N., Hochschild, V., & Schneider, C. (2015). Surface energy and MAss balance at Purogangri ice cap, central Tibetan Plateau, 2001-2011. Journal of Glaciology, 61(230), 1048–1060. https://doi.org/10.3189/2015JoG15J056
- Huss, M., & Hock, R. (2015). A new model for global glacier change and sea-level rise. Frontiers in Earth Science, 3, 1–22. https://doi.org/10.3389/feart.2015.00054
- Immerzeel, W. W., Pellicciotti, F., & Bierkens, M. F. P. (2013). Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience, 6(9), 742–745. https://doi.org/10.1038/ngeo1896
- Jacob, T., Wahr, J., Pfeffer, W. T., & Swenson, S. (2012). Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514–518. https://doi.org/10.1038/nature10847
- Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S., Evans, S. G., Bartelt, P., Berthier, E., Brun, F., Chao, W. A., Farinotti, D., Gimbert, F., Guo, W., Huggel, C., Kargel, J. S., Leonard, G. J., Tian, L., Treichler, D., & Yao, T. (2018). Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geoscience, 11(2), 114–120. https://doi.org/10.1038/s41561-017-0039-7
- Kayastha, R. B., Ohata, T., & Ageta, Y. (1999). Application of a mass-balance model to a Himalayan glacier. Journal of Glaciology, 45(151), 559–567.
- Klok, E. J., & Oerlemans, J. (2002). Model study of the spatial distribution of the energy and mass balance of Morteratschgletscher, Switzerland. Journal of Glaciology, 48(163), 505–518. https://doi.org/10.3189/172756502781831133
- Knudsen, E. M. (2011). Modeling of the potential effect of Himalayan glacier melting on water availability. Master Thesis in Climate Dynamics. University of Bergen.
- Kulkarni, A. V., & Karyakarte, Y. (2014). Observed changes in Himalayan glaciers. Current Science, 106(2), 237–244. https://doi.org/10.18520/cs/v106/i2/237-244
- Kumar, P., Saharwardi, M. S., Banerjee, A., Azam, M. F., Dubey, A. K., & Murtugudde, R. (2019). Snowfall variability dictates glacier mass balance variability in Himalaya-Karakoram. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-54553-9
- Li, F., Jackson, T. J., Kustas, W. P., Schmugge, T. J., French, A. N., Cosh, M. H., & Bindlish, R. (2004). Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote Sensing of Environment, 92(4), 521–534. https://doi.org/10.1016/j.rse.2004.02.018
- Li, S., Yao, T., Yang, W., Yu, W., & Zhu, M. (2018). Glacier energy and mass balance in the inland Tibetan Plateau: Seasonal and interannual variability in relation to atmospheric changes. Journal of Geophysical Research: Atmospheres, 123(12), 6390–6409. https://doi.org/10.1029/2017JD028120
- Lin, S., Moore, N. J., Messina, J. P., DeVisser, M. H., & Wu, J. (2012). Evaluation of estimating daily maximum and minimum air temperature with MODIS data in East Africa. International Journal of Applied Earth Observation and Geoinformation, 18(1), 128–140. https://doi.org/10.1016/j.jag.2012.01.004
- Liu, Y., Wang, N., Zhang, J., & Wang, L. (2019). Climate change and its impacts on mountain glaciers during 1960–2017 in western China. Journal of Arid Land, 11(4), 537–550. https://doi.org/10.1007/s40333-019-0025-6
- Mahto, S. S., & Mishra, V. (2019). Does ERA-5 outperform other reanalysis products for hydrologic applications in India? Journal of Geophysical Research: Atmospheres, 124(16), 9423–9441. https://doi.org/10.1029/2019JD031155
- Mandal, A., Ramanathan, A., Angchuk, T., Soheb, M., & Singh, V. B. (2016). Unsteady state of glaciers (Chhota Shigri and Hamtah) and climate in Lahaul and Spiti region, western Himalayas: A review of recent mass loss. Environmental Earth Sciences, 75(17), 1–12. https://doi.org/10.1007/s12665-016-6023-5
- Mandal, A., Ramanathan, A., Azam, M. F., Angchuk, T., Soheb, M., Kumar, N., Pottakkal, J. G., Vatsal, S., Mishra, S., & Singh, V. B. (2020). Understanding the interrelationships among mass balance, meteorology, discharge and surface velocity on Chhota Shigri Glacier over 2002-2019 using in situ measurements. Journal of Glaciology, 66, 727–741. https://doi.org/10.1017/jog.2020.42
- Mandal, A., Ramanathan, A., Farooq Azam, M., Wagnon, P., Vincent, C., Linda, A., Sharma, P., Angchuk, T., Bahadur Singh, V., & Pottakkal, J. G. (2015). Annual and seasonal mass balances of Chhota Shigri Glacier (benchmark glacier, Western Himalaya), India. EGU General Assembly Conference Abstracts, 17(March), 14078.
- Milner, A. M., Khamis, K., Battin, T. J., Brittain, J. E., Barrand, N. E., Füreder, L., Cauvy-Fraunié, S., Gíslason, G. M., Jacobsen, D., Hannah, D. M., Hodson, A. J., Hood, E., Lencioni, V., Ólafsson, J. S., Robinson, C. T., Tranter, M., & Brown, L. E. (2017). Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences of the United States of America, 114(37), 9770–9778. https://doi.org/10.1073/pnas.1619807114
- Mohamed, A. A., Odindi, J., & Mutanga, O. (2017). Land surface temperature and emissivity estimation for urban Heat Island assessment using medium- and low-resolution space-borne sensors: A review. Geocarto International, 32(4), 455–470. https://doi.org/10.1080/10106049.2016.1155657
- Moholdt, G., Nuth, C., Hagen, J. O., & Kohler, J. (2010). Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry. Remote Sensing of Environment, 114(11), 2756–2767. https://doi.org/10.1016/j.rse.2010.06.008
- Moiwo, J. P., Yang, Y., Tao, F., Lu, W., & Han, S. (2011). Water storage change in the Himalayas from the gravity recovery and climate experiment (GRACE) and an empirical climate model. Water Resources Research, 47(7), 1–13. https://doi.org/10.1029/2010WR010157
- Munro, D. S. (1989). Surface roughness and bulk heat transfer on a glacier: Comparison with eddy correlation. Journal of Glaciology, 35(121), 343–348. https://doi.org/10.1017/S0022143000009266
- NASA. (2009). ASTER global DEM validation. lpdaac usgs gov4. Available from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:ASTER+Global+DEM+Validation#3
- Negi, H. S., Kanda, N., Shekhar, M. S., & Ganju, A. (2018). Recent wintertime climatic variability over the North West Himalayan cryosphere. Current Science, 114(4), 760–770. https://doi.org/10.18520/cs/v114/i04/760-770
- Oerlemans, J., & Klok, E. J. (2002). Energy balance of a glacier surface: Analysis of automatic weather station data from the Morteratschgletscher, Switzerland. Arctic, Antarctic, and Alpine Research, 34(4), 477. https://doi.org/10.2307/1552206
- Oerlemans, J., Anderson, B., Hubbard, A., Huybrechts, P., Jóhannesson, T., Knap, W. H., Schmeits, M., Stroeven, A. P., Van De Wal, R. S. W., Wallinga, J., & Zuo, Z. (1998). Modelling the response of glaciers to climate warming. Climate Dynamics, 14(4), 267–274. https://doi.org/10.1007/s003820050222
- Oke, T. R. (1987). Boundary layer climates. Taylor & Francis e-Library. Available at: http://repositorio.unan.edu.ni/2986/1/5624.pdf
- Pandey, P., Ali, S. N., Ramanathan, A. L., Champati ray, P. K., & Venkataraman, G. (2017). Regional representation of glaciers in Chandra Basin region, western Himalaya, India. Geoscience Frontiers, 8(4), 841–850. https://doi.org/10.1016/j.gsf.2016.06.006
- Patel, L. K., Sharma, P., Laluraj, C. M., Thamban, M., Singh, A., & Ravindra, R. (2017). A geospatial analysis of Samudra Tapu and Gepang Gath glacial lakes in the Chandra Basin, Western Himalaya. Natural Hazards, 86(3), 1275–1290. https://doi.org/10.1007/s11069-017-2743-4
- Paul, F., & Kotlarski, S. (2010). Forcing a distributed glacier mass balance model with the regional climate model REMO. Part II: Downscaling strategy and results for two swiss glaciers. Journal of Climate, 23(6), 1607–1620. https://doi.org/10.1175/2009JCLI3345.1
- Paul, F., Machguth, H., Hoelzle, M., Salzmann, N., & Haeberli, W. (2008). Alpine-wide distributed glacier mass balance modelling: A tool for assessing future glacier change? In The darkening peaks: Glacial retreat in scientific and social context (pp. 111–125). Berkeley, CA: University of California Press. https://doi.org/10.5167/uzh-8177
- Pratap, B., Sharma, P., Patel, L., Singh, A. T., Gaddam, V. K., Oulkar, S., & Thamban, M. (2019). Reconciling high glacier surface melting in summer with air temperature in the semi-arid zone of Western Himalaya. Water (Switzerland), 11(8), 1561. https://doi.org/10.3390/w11081561
10.3390/w11081561 Google Scholar
- Prihodko, L., & Goward, S. N. (1997). Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment, 60(3), 335–346. https://doi.org/10.1016/S0034-4257(96)00216-7
- Pritchard, D. M. W., Forsythe, N., O'Donnell, G., Fowler, H. J., & Rutter, N. (2020). Multi-physics ensemble snow modelling in the western Himalaya. The Cryosphere, 14(4), 1225–1244. https://doi.org/10.5194/tc-14-1225-2020
- Ragettli, S., Pellicciotti, F., Bordoy, R., & Immerzeel, W. W. (2013). Sources of uncertainty in modeling the glaciohydrological response of a Karakoram watershed to climate change. Water Resources Research, 49(9), 6048–6066. https://doi.org/10.1002/wrcr.20450
- Ramanathan, A. L. (2011). Status report on Chhota Shigri Glacier (Himachal Pradesh), Department of science and technology, ministry of science and technology, New Delhi. Himal. Glaciol. Tech. Rep, 1-88.
- Randhawa, S. S., & Gautam, N. (2019). Assessment of spatial distribution of seasonal snow cover during the year 2018-19 in Himachal Pradesh using space data. H.P state centre on climate change. Available at: http://www.hpccc.gov.in/documents/SnowCoverAnalysis.pdf.
- RGI Consortium. (2017). Randolph Glacier Inventory – A dataset of global glacier outlines: Version 6.0. Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media (July): 1–14. https://doi.org/10.7265/N5-RGI-60
10.7265/N5-RGI-60 Google Scholar
- Richardson, S. D., & Reynolds, J. M. (2000). An overview of glacial hazards in the Himalayas. Quaternary International, 65–66, 31–47. https://doi.org/10.1016/S1040-6182(99)00035-X
- Sangewar, C. V., & Shukla, S. P. (2009). Inventory of the Himalayan glaciers: A contribution to the International Hydrological Programme. An updated edition. (special publication 34, pp. 0254–0436). Calcutta: Director General, Geological Survey of India. https://doi.org/10.1163/_q3_SIM_00374
- Sattar, A., Goswami, A., Kulkarni, A. V., & Emmer, A. (2020). Lake evolution, hydrodynamic outburst flood modeling and sensitivity analysis in the central himalaya: A case study. Water (Switzerland), 12(1), 1–19. https://doi.org/10.3390/w12010237
10.3390/w12010237 Google Scholar
- Schauwecker, S., Rohrer, M., Huggel, C., Kulkarni, A., Ramanathan, A. L., Salzmann, N., Stoffel, M., & Brock, B. (2015). Remotely sensed debris thickness mapping of Bara Shigri Glacier, Indian Himalaya. Journal of Glaciology, 61(228), 675–688. https://doi.org/10.3189/2015JoG14J102
- Sekertekin, A., & Bonafoni, S. (2020). Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2), 294. https://doi.org/10.3390/rs12020294
- Sharma, P., Patel, L. K., Ravindra, R., Singh, A., Mahalinganathan, K., & Thamban, M. (2016). Role of debris cover to control specific ablation of adjoining batal and sutri Dhaka glaciers in chandra basin (Himachal Pradesh) during peak ablation season. Journal of Earth System Science, 125(3), 459–473. https://doi.org/10.1007/s12040-016-0681-2
- Sharma, P., Patel, L. K., Singh, A. T., Meloth, T., & Ravindra, R. (2020). Glacier response to climate in Arctic and Himalaya during last seventeen years: A case study of Svalbard, Arctic and Chandra Basin, Himalaya. In P. S. Goel, R. Ravindra, & S. Chattopadhyay (Eds.), Climate change and the white world (pp. 139–156). Springer.
10.1007/978-3-030-21679-5_10 Google Scholar
- Shekhar, M. S., Chand, H., Kumar, S., Srinivasan, K., & Ganju, A. (2010). Climate-change studies in the western Himalaya. Annals of Glaciology, 51(54), 105–112. https://doi.org/10.3189/172756410791386508
- Shukla, S. P., Mishra, R., & Kumar, A. (2020). Glacier melt water characteristics of Hamtah Glacier, Lahaul and Spiti District, Himachal Pradesh, India. In P. S. Goel, R. Ravindra, & S. Chattopadhyay (Eds.), Climate change and the white world (pp. 169–186). Springer.
10.1007/978-3-030-21679-5_12 Google Scholar
- Sicart, J. E., Hock, R., Ribstein, P., Litt, M., & Ramirez, E. (2011). Analysis of seasonal variations in mass balance and meltwater discharge of the tropical Zongo Glacier by application of a distributed energy balance model. Journal of Geophysical Research Atmospheres, 116(13), 1–18. https://doi.org/10.1029/2010JD015105
10.1029/2010JD015105 Google Scholar
- Soheb, M., Ramanathan, A., Angchuk, T., Mandal, A., Kumar, N., & Lotus, S. (2020). Mass-balance observation, reconstruction and sensitivity of Stok glacier, Ladakh region, India, between 1978 and 2019. Journal of Glaciology, 66, 627–642. https://doi.org/10.1017/jog.2020.34
- Soheb, M., Ramanathan, A., Mandal, A., Angchuk, T., Pandey, N., & Mishra, S. D. (2017). Wintertime surface energy balance of a high-altitude seasonal snow surface in Chhota Shigri glacier basin, Western Himalaya. Geological Society, London, Special Publications (September): SP462, 462, 10–168. https://doi.org/10.1144/SP462.10
10.1144/SP462.10 Google Scholar
- Soheb, M., Ramanathan, A., Mandal, A., Angchuk, T., Pandey, N., & Mishra, S. D. (2018). Wintertime surface energy balance of a high-altitude seasonal snow surface in Chhota Shigri glacier basin, Western Himalaya. Geological Society Special Publication, 462(1), 155–168. https://doi.org/10.1144/SP462.10
10.1144/SP462.10 Google Scholar
- Sutterley, T. C., Velicogna, I., & Hsu, C. W. (2020). Self-consistent ice mass balance and Regional Sea level from time-variable gravity. Earth and Space Science, 7(3), 1–11. https://doi.org/10.1029/2019EA000860
- Swinbank, W. C. (1963). Long-wave radiation from clear skies. Quarterly Journal of the Royal Meteorological Society, 89(381), 339–348. https://doi.org/10.1002/qj.49708938105
- Tasumi, M. (2005). Progress in operational estimation of regional evapotranspiration using satellite imagery. https://doi.org/10.1163/_q3_SIM_00374
10.1163/_q3_SIM_00374 Google Scholar
- Tawde, S. A., Kulkarni, A. V., & Bala, G. (2017). An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984-2012. Annals of Glaciology, 58(75), 99–109. https://doi.org/10.1017/aog.2017.18
- Teodoro, P. E., Delgado, R. C., Oliveira-Junior, J. F., Gois, G., & Sohn, F. T. (2018). Incoming longwave radiation evaluation for the legal Amazon using HadRM3 and geostatistic theoretical models. Floresta e Ambiente, 25(2), 1–8. https://doi.org/10.1590/2179-8087.009416
10.1590/2179-8087.009416 Google Scholar
- Todd, J., Christoffersen, P., Zwinger, T., Räback, P., & Benn, D. I. (2019). Sensitivity of a calving glacier to ice-ocean interactions under climate change: New insights from a 3-d full-stokes model. The Cryosphere, 13(6), 1681–1694. https://doi.org/10.5194/tc-13-1681-2019
- USEPA. (2000). Meteorological monitoring guidance for regulatory modeling applications. Epa-454/R-99-005: 171. Available from http://www.epa.gov/scram001/guidance/met/mmgrma.pdf
- Vincent, C., Ramanathan, A., Wagnon, P., Dobhal, D. P., Linda, A., Berthier, E., Sharma, P., Arnaud, Y., Azam, M. F., Jose, P. G., & Gardelle, J. (2013). Balanced conditions or slight mass gain of glaciers in the Lahaul and Spiti region (northern India, Himalaya) during the nineties preceded recent mass loss. The Cryosphere, 7(2), 569–582. https://doi.org/10.5194/tc-7-569-2013
- Wagnon, P., Linda, A., Arnaud, Y., Kumar, R., Sharma, P., Vincent, C., Pottakkal, J. G., Berthier, E., Ramanathan, A., Hasnain, S. I., & Chevallier, P. (2007). Four years of mass balance on Chhota Shigri Glacier, Himachal Pradesh, India, a new benchmark glacier in the western Himalaya. Journal of Glaciology, 53(183), 603–611. https://doi.org/10.3189/002214307784409306
- Wagnon, P., Vincent, C., Arnaud, Y., Berthier, E., Vuillermoz, E., Gruber, S., Ménégoz, M., Gilbert, A., Dumont, M., Shea, J. M., Stumm, D., & Pokhrel, B. K. (2013). Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. The Cryosphere, 7(6), 1769–1786. https://doi.org/10.5194/tc-7-1769-2013
- Wallinga, J., & Van De Wal, S. W. R. (1998). Sensitivity of Rhonegletscher, Switzerland, to climate change: Experiments with a one-dimensional flowline model. Journal of Glaciology, 44(147), 383–393. https://doi.org/10.1017/S0022143000002719
- Wastlhuber, R., Hock, R., Kienholz, C., & Braun, M. (2017). Glacier changes in the Susitna Basin, Alaska, USA, (1951-2015) using GIS and remote sensing methods. Remote Sensing, 9(5), 1–17. https://doi.org/10.3390/rs9050478
- Wouters, B., Gardner, A. S., & Moholdt, G. (2019). Global glacier mass loss during the GRACE satellite mission (2002-2016). Frontiers in Earth Science, 7, 1–11. https://doi.org/10.3389/feart.2019.00096
- Yang, W., Guo, X., Yao, T., Yang, K., Zhao, L., Li, S., & Zhu, M. (2011). Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. Journal of Geophysical Research Atmospheres, 116(14), 1–11. https://doi.org/10.1029/2010JD015183
10.1029/2010JD015183 Google Scholar
- Zhang, G., Kang, S., Fujita, K., Huintjes, E., Xu, J., Yamazaki, T., Haginoya, S., Wei, Y., Scherer, D., Schneider, C., & Yao, T. (2013). Energy and mass balance of Zhadang glacier surface, central Tibetan Plateau. Journal of Glaciology, 59(213), 137–148. https://doi.org/10.3189/2013JoG12J152