Identification of TFG (TRK-fused gene) as a putative metastatic melanoma tumor suppressor gene
Corresponding Author
Ken Dutton-Regester
Queensland Institute of Medical Research, Oncogenomics Laboratory, Brisbane QLD 4006, Australia
Faculty of Science and Technology, Queensland University of Technology, Brisbane QLD 4000, Australia
300 Herston Rd, Herston 4029 QLD, AustraliaSearch for more papers by this authorLauren G. Aoude
Queensland Institute of Medical Research, Oncogenomics Laboratory, Brisbane QLD 4006, Australia
Search for more papers by this authorDerek J. Nancarrow
Queensland Institute of Medical Research, Oncogenomics Laboratory, Brisbane QLD 4006, Australia
Search for more papers by this authorMitchell S. Stark
Queensland Institute of Medical Research, Oncogenomics Laboratory, Brisbane QLD 4006, Australia
Search for more papers by this authorLinda O'Connor
Queensland Institute of Medical Research, Cancer Immunotherapy Laboratory, Brisbane QLD, 4006 Australia
Search for more papers by this authorCathy Lanagan
Queensland Institute of Medical Research, Cancer Immunotherapy Laboratory, Brisbane QLD, 4006 Australia
Search for more papers by this authorGulietta M. Pupo
University of Sydney at Westmead Millennium Institute, Westmead NSW 2145, Australia
Melanoma Institute of Australia (Formerly the Sydney Melanoma Unit), North Sydney, NSW 2060, Australia
Search for more papers by this authorVarsha Tembe
University of Sydney at Westmead Millennium Institute, Westmead NSW 2145, Australia
Melanoma Institute of Australia (Formerly the Sydney Melanoma Unit), North Sydney, NSW 2060, Australia
Search for more papers by this authorCandace D. Carter
Melanoma Institute of Australia (Formerly the Sydney Melanoma Unit), North Sydney, NSW 2060, Australia
Search for more papers by this authorMichael O'Rourke
Morris Tower, 149 Wickham Tce Brisbane 4000 QLD, Australia
Search for more papers by this authorRichard A. Scolyer
Melanoma Institute of Australia (Formerly the Sydney Melanoma Unit), North Sydney, NSW 2060, Australia
Department Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
Discipline of Pathology, Sydney Medical School, the University of Sydney, NSW, 2006 Australia
Search for more papers by this authorGraham J. Mann
University of Sydney at Westmead Millennium Institute, Westmead NSW 2145, Australia
Melanoma Institute of Australia (Formerly the Sydney Melanoma Unit), North Sydney, NSW 2060, Australia
Search for more papers by this authorChristopher W. Schmidt
Queensland Institute of Medical Research, Cancer Immunotherapy Laboratory, Brisbane QLD, 4006 Australia
Search for more papers by this authorAdrian Herington
Faculty of Science and Technology, Queensland University of Technology, Brisbane QLD 4000, Australia
Search for more papers by this authorNicholas K. Hayward
Queensland Institute of Medical Research, Oncogenomics Laboratory, Brisbane QLD 4006, Australia
Search for more papers by this authorCorresponding Author
Ken Dutton-Regester
Queensland Institute of Medical Research, Oncogenomics Laboratory, Brisbane QLD 4006, Australia
Faculty of Science and Technology, Queensland University of Technology, Brisbane QLD 4000, Australia
300 Herston Rd, Herston 4029 QLD, AustraliaSearch for more papers by this authorLauren G. Aoude
Queensland Institute of Medical Research, Oncogenomics Laboratory, Brisbane QLD 4006, Australia
Search for more papers by this authorDerek J. Nancarrow
Queensland Institute of Medical Research, Oncogenomics Laboratory, Brisbane QLD 4006, Australia
Search for more papers by this authorMitchell S. Stark
Queensland Institute of Medical Research, Oncogenomics Laboratory, Brisbane QLD 4006, Australia
Search for more papers by this authorLinda O'Connor
Queensland Institute of Medical Research, Cancer Immunotherapy Laboratory, Brisbane QLD, 4006 Australia
Search for more papers by this authorCathy Lanagan
Queensland Institute of Medical Research, Cancer Immunotherapy Laboratory, Brisbane QLD, 4006 Australia
Search for more papers by this authorGulietta M. Pupo
University of Sydney at Westmead Millennium Institute, Westmead NSW 2145, Australia
Melanoma Institute of Australia (Formerly the Sydney Melanoma Unit), North Sydney, NSW 2060, Australia
Search for more papers by this authorVarsha Tembe
University of Sydney at Westmead Millennium Institute, Westmead NSW 2145, Australia
Melanoma Institute of Australia (Formerly the Sydney Melanoma Unit), North Sydney, NSW 2060, Australia
Search for more papers by this authorCandace D. Carter
Melanoma Institute of Australia (Formerly the Sydney Melanoma Unit), North Sydney, NSW 2060, Australia
Search for more papers by this authorMichael O'Rourke
Morris Tower, 149 Wickham Tce Brisbane 4000 QLD, Australia
Search for more papers by this authorRichard A. Scolyer
Melanoma Institute of Australia (Formerly the Sydney Melanoma Unit), North Sydney, NSW 2060, Australia
Department Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050 Australia
Discipline of Pathology, Sydney Medical School, the University of Sydney, NSW, 2006 Australia
Search for more papers by this authorGraham J. Mann
University of Sydney at Westmead Millennium Institute, Westmead NSW 2145, Australia
Melanoma Institute of Australia (Formerly the Sydney Melanoma Unit), North Sydney, NSW 2060, Australia
Search for more papers by this authorChristopher W. Schmidt
Queensland Institute of Medical Research, Cancer Immunotherapy Laboratory, Brisbane QLD, 4006 Australia
Search for more papers by this authorAdrian Herington
Faculty of Science and Technology, Queensland University of Technology, Brisbane QLD 4000, Australia
Search for more papers by this authorNicholas K. Hayward
Queensland Institute of Medical Research, Oncogenomics Laboratory, Brisbane QLD 4006, Australia
Search for more papers by this authorAbstract
High density SNP arrays can be used to identify DNA copy number changes in tumors such as homozygous deletions of tumor suppressor genes and focal amplifications of oncogenes. Illumina Human CNV370 Bead chip arrays were used to assess the genome for unbalanced chromosomal events occurring in 39 cell lines derived from stage III metastatic melanomas. A number of genes previously recognized to have an important role in the development and progression of melanoma were identified including homozygous deletions of CDKN2A (13 of 39 samples), CDKN2B (10 of 39), PTEN (3 of 39), PTPRD (3 of 39), TP53 (1 of 39), and amplifications of CCND1 (2 of 39), MITF (2 of 39), MDM2 (1 of 39), and NRAS (1 of 39). In addition, a number of focal homozygous deletions potentially targeting novel melanoma tumor suppressor genes were identified. Because of their likely functional significance for melanoma progression, FAS, CH25H, BMPR1A, ACTA2, and TFG were investigated in a larger cohort of melanomas through sequencing. Nonsynonymous mutations were identified in BMPR1A (1 of 43), ACTA2 (3 of 43), and TFG (5 of 103). A number of potentially important mutation events occurred in TFG including the identification of a mini mutation “hotspot” at amino acid residue 380 (P380S and P380L) and the presence of multiple mutations in two melanomas. Mutations in TFG may have important clinical relevance for current therapeutic strategies to treat metastatic melanoma. © 2012 Wiley Periodicals, Inc.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
GCC_21932_sm_SuppTables.xls45 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. 2010. A method and server for predicting damaging missense mutations. Nat Methods 7: 248–249.
- Atkins MB, Kunkel L, Sznol M, Rosenberg SA. 2000. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: Long-term survival update. Cancer J Sci Am 6(Suppl 1): S11–S14.
- Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D. 1998. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58: 2170–2175.
- Calva-Cerqueira D, Chinnathambi S, Pechman B, Bair J, Larsen-Haidle J, Howe JR. 2009. The rate of germline mutations and large deletions of SMAD4 and BMPR1A in juvenile polyposis. Clin Genet 75: 79–85.
- Carter C, De Silva C, Synnott M, Thompson J, Stretch J, Spillane A, Quinn M, Saw R, Shannon K, Murali R, Keffor R, Hersey P, Shivalingam B, Hughes M, Howle J, Long G, Mann G, Scolyer R. 2010. Bio-Specimen banking: Melanoma institute Australia. Pigment Cell Melanoma Res 23: 946–947.
- Castellano M, Pollock PM, Walters MK, Sparrow LE, Down LM, Gabrielli BG, Parsons PG, Hayward NK. 1997. CDKN2A/p16 is inactivated in most melanoma cell lines. Cancer Res 57: 4868–4875.
- Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O'Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 346: 2507–2516.
- Cheah PY, Wong YH, Chau YP, Loi C, Lim KH, Lim JF, Koh PK, Eu KW. 2009. Germline bone morphogenesis protein receptor 1A mutation causes colorectal tumorigenesis in hereditary mixed polyposis syndrome. Am J Gastroenterol 104: 3027–3033.
- Chernoff KA, Bordone L, Horst B, Simon K, Twadell W, Lee K, Cohen JA, Wang S, Silvers DN, Brunner G, Celebi JT. 2009. GAB2 amplifications refine molecular classification of melanoma. Clin Cancer Res 15: 4288–4291.
- Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC. 2005. Distinct sets of genetic alterations in melanoma. N Engl J Med 353: 2135–2147.
- Dundr P, Povysil C, Tvrdik D. 2009. Actin expression in neural crest cell-derived tumors including schwannomas, malignant peripheral nerve sheath tumors, neurofibromas and melanocytic tumors. Pathol Int 59: 86–90.
- Emery CM, Vijayendran KG, Zipser MC, Sawyer AM, Niu L, Kim JJ, Hatton C, Chopra R, Oberholzer PA, Karpova MB, MacConaill LE, Zhang J, Gray NS, Sellers WR, Dummer R, Garraway LA. 2009. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci USA 106: 20411–20416.
- Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O'Dwyer PJ, Lee RJ, Grippo JF, Nolop K, Chapman PB. 2010. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363: 809–819.
- Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR. 2005. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436: 117–122.
- Gast A, Scherer D, Chen B, Bloethner S, Melchert S, Sucker A, Hemminki K, Schadendorf D, Kumar R. 2010. Somatic alterations in the melanoma genome: A high-resolution array-based comparative genomic hybridization study. Genes Chromosomes Cancer 49: 733–745.
- Greco A, Mariani C, Miranda C, Lupas A, Pagliardini S, Pomati M, Pierotti MA. 1995. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol 15: 6118–6127.
- Greco A, Fusetti L, Miranda C, Villa R, Zanotti S, Pagliardini S, Pierotti MA. 1998. Role of the TFG N-terminus and coiled-coil domain in the transforming activity of the thyroid TRK-T3 oncogene. Oncogene 16: 809–816.
- Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, Bourgeois S, Estrera AL, Safi HJ, Sparks E, Amor D, Ades L, McConnell V, Willoughby CE, Abuelo D, Willing M, Lewis RA, Kim DH, Scherer S, Tung PP, Ahn C, Buja LM, Raman CS, Shete SS, Milewicz DM. 2007. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39: 1488–1493.
- Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, Kim DH, Pannu H, Willing MC, Sparks E, Pyeritz RE, Singh MN, Dalman RL, Grotta JC, Marian AJ, Boerwinkle EA, Frazier LQ, LeMaire SA, Coselli JS, Estrera AL, Safi HJ, Veeraraghavan S, Muzny DM, Wheeler DA, Willerson JT, Yu RK, Shete SS, Scherer SE, Raman CS, Buja LM, Milewicz DM. 2009. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet 84: 617–627.
- Hernandez L, Pinyol M, Hernandez S, Bea S, Pulford K, Rosenwald A, Lamant L, Falini B, Ott G, Mason DY, Delsol G, Campo E. 1999. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 94: 3265–3268.
- Hernandez L, Bea S, Bellosillo B, Pinyol M, Falini B, Carbone A, Ott G, Rosenwald A, Fernandez A, Pulford K, Mason D, Morris SW, Santos E, Campo E. 2002. Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: Identification of a new TFG-ALK(XL) chimeric gene with transforming activity. Am J Pathol 160: 1487–1494.
- Hisaoka M, Ishida T, Imamura T, Hashimoto H. 2004. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 40: 325–328.
- Howe JR, Sayed MG, Ahmed AF, Ringold J, Larsen-Haidle J, Merg A, Mitros FA, Vaccaro CA, Petersen GM, Giardiello FM, Tinley ST, Aaltonen LA, Lynch HT. 2004. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet 41: 484–491.
- Howe JR, Chinnathambi S, Calva D, Bair J, Pechman B, Salamon A, Tam B, Simon L. 2008. A family with two consecutive nonsense mutations in BMPR1A causing juvenile polyposis. Cancer Genet Cytogenet 181: 52–54.
- Jiang CC, Lai F, Thorne RF, Yang F, Liu H, Hersey P, Zhang XD. 2011. MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin Cancer Res 17: 721–730.
- Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J, Caponigro G, Hieronymus H, Murray RR, Salehi-Ashtiani K, Hill DE, Vidal M, Zhao JJ, Yang X, Alkan O, Kim S, Harris JL, Wilson CJ, Myer VE, Finan PM, Root DE, Roberts TM, Golub T, Flaherty KT, Dummer R, Weber BL, Sellers WR, Schlegel R, Wargo JA, Hahn WC, Garraway LA. 2010. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468: 968–972.
- Jonsson G, Dahl C, Staaf J, Sandberg T, Bendahl PO, Ringner M, Guldberg P, Borg A. 2007. Genomic profiling of malignant melanoma using tiling-resolution arrayCGH. Oncogene 26: 4738–4748.
-
Kefford R,
Arkenau H,
Briown M,
Millward M,
Infante J,
Long GV,
Ouellet D,
Curtis M,
Lebowitz PF,
Falchook GS.
2010.
Phase I/II study of GSK2118436, a selective inhibitor of oncogenic mutant BRAF kinase, in patients with metastatic melanoma and other solid tumours.
J Clin Oncol 28: 8503.
10.1200/jco.2010.28.15_suppl.8503 Google Scholar
- Longacre TA, Egbert BM, Rouse RV. 1996. Desmoplastic and spindle-cell malignant melanoma. An immunohistochemical study. Am J Surg Pathol 20: 1489–1500.
- Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y, Doi T, Shimotohno K, Harada T, Nishida E, Hayashi H, Sugano S. 2003. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22: 3307–3318.
- McCarthy SW, Scolyer RA, Palmer AA. 2004. Desmoplastic melanoma: A diagnostic trap for the unwary. Pathology 36: 445–451.
- Ming Kwan K, Li AG, Wang XJ, Wurst W, Behringer RR. 2004. Essential roles of BMPR-IA signaling in differentiation and growth of hair follicles and in skin tumorigenesis. Genesis 39: 10–25.
- Morisaki H, Akutsu K, Ogino H, Kondo N, Yamanaka I, Tsutsumi Y, Yoshimuta T, Okajima T, Matsuda H, Minatoya K, Sasaki H, Tanaka H, Ishibashi-Ueda H, Morisaki T. 2009. Mutation of ACTA2 gene as an important cause of familial and nonfamilial nonsyndromatic thoracic aortic aneurysm and/or dissection (TAAD). Hum Mutat 30: 1406–1411.
- Muthusamy V, Hobbs C, Nogueira C, Cordon-Cardo C, McKee PH, Chin L, Bosenberg MW. 2006. Amplification of CDK4 and MDM2 in malignant melanoma. Genes Chromosomes Cancer 45: 447–454.
- Nancarrow DJ, Handoko HY, Stark MS, Whiteman DC, Hayward NK. 2007. SiDCoN: A tool to aid scoring of DNA copy number changes in SNP chip data. PLoS One 2: e1093.
- Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS. 2010. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468: 973–977.
- Okamoto-Inoue M, Kamada S, Kimura G, Taniguchi S. 1999. The induction of smooth muscle alpha actin in a transformed rat cell line suppresses malignant properties in vitro and in vivo. Cancer Lett 142: 173–178.
- Okamoto-Inoue M, Nakayama J, Hori Y, Taniguchi S. 2000. Human malignant melanoma cells release a factor that inhibits the expression of smooth muscle alpha-actin. J Dermatol Sci 23: 170–177.
- Owens GK, Thompson MM. 1986. Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation. J Biol Chem 261: 13373–13380.
- Owens GK, Loeb A, Gordon D, Thompson MM. 1986. Expression of smooth muscle-specific alpha-isoactin in cultured vascular smooth muscle cells: Relationship between growth and cytodifferentiation. J Cell Biol 102: 343–352.
- Pavey S, Johansson P, Packer L, Taylor J, Stark M, Pollock PM, Walker GJ, Boyle GM, Harper U, Cozzi SJ, Hansen K, Yudt L, Schmidt C, Hersey P, Ellem KA, O'Rourke MG, Parsons PG, Meltzer P, Ringner M, Hayward NK. 2004. Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene 23: 4060–4067.
- Pirker C, Holzmann K, Spiegl-Kreinecker S, Elbling L, Thallinger C, Pehamberger H, Micksche M, Berger W. 2003. Chromosomal imbalances in primary and metastatic melanomas: Over-representation of essential telomerase genes. Melanoma Res 13: 483–492.
- Reddy S, Ozgur K, Lu M, Chang W, Mohan SR, Kumar CC, Ruley HE. 1990. Structure of the human smooth muscle alpha-actin gene. Analysis of a cDNA and 5′ upstream region. J Biol Chem 265: 1683–1687.
- Roccato E, Pagliardini S, Cleris L, Canevari S, Formelli F, Pierotti MA, Greco A. 2003. Role of TFG sequences outside the coiled-coil domain in TRK-T3 oncogenic activation. Oncogene 22: 807–818.
- Ronnov-Jessen L, Petersen OW. 1996. A function for filamentous alpha-smooth muscle actin: Retardation of motility in fibroblasts. J Cell Biol 134: 67–80.
- Stark M, Hayward N. 2007. Genome-wide loss of heterozygosity and copy number analysis in melanoma using high-density single-nucleotide polymorphism arrays. Cancer Res 67: 2632–2642.
- Strauch AR, Rubenstein PA. 1984. Induction of vascular smooth muscle alpha-isoactin expression in BC3H1 cells. J Biol Chem 259: 3152–3159.
- Taniguchi S, Inoue M, Nakayama J, Sadano H, Hori Y, Baba T. 1989. Differential expression of smooth muscle alpha-like actin between benign and malignant human pigment tissues. Cancer Lett 47: 29–36.
- Timmermann B, Kerick M, Roehr C, Fischer A, Isau M, Boerno ST, Wunderlich A, Barmeyer C, Seemann P, Koenig J, Lappe M, Kuss AW, Garshasbi M, Bertram L, Trappe K, Werber M, Herrmann BG, Zatloukal K, Lehrach H, Schweiger MR. 2010. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis. PLoS One 5: e15661.
- Tsai J, Lee JT, Wang W, Zhang J, Cho H, Mamo S, Bremer R, Gillette S, Kong J, Haass NK, Sproesser K, Li L, Smalley KS, Fong D, Zhu YL, Marimuthu A, Nguyen H, Lam B, Liu J, Cheung I, Rice J, Suzuki Y, Luu C, Settachatgul C, Shellooe R, Cantwell J, Kim SH, Schlessinger J, Zhang KY, West BL, Powell B, Habets G, Zhang C, Ibrahim PN, Hirth P, Artis DR, Herlyn M, Bollag G. 2008. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci USA 105: 3041–3046.
- Ueda Y, Richmond A. 2006. NF-kappaB activation in melanoma. Pigment Cell Res 19: 112–124.
- Villanueva J, Vultur A, Lee JT, Somasundaram R, Fukunaga-Kalabis M, Cipolla AK, Wubbenhorst B, Xu X, Gimotty PA, Kee D, Santiago-Walker AE, Letrero R, D'Andrea K, Pushparajan A, Hayden JE, Brown KD, Laquerre S, McArthur GA, Sosman JA, Nathanson KL, Herlyn M. 2010. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell 18: 683–695.
- Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, Kehoe SM, Johannessen CM, Macconaill LE, Hahn WC, Meyerson M, Garraway LA. 2011. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29: 3085–3096.