Effect of Porous Metal Flow Field in Polymer Electrolyte Membrane Fuel Cell under Pressurized Condition
C.-Y. Ahn
Center for Nanoparticle Research, Institute for Basic Science (IBS), 08826 Seoul, Republic of Korea
School of Chemical and Biological Engineering, Seoul National University (SNU), 08826 Seoul, Republic of Korea
Search for more papers by this authorM. S. Lim
Department of Chemical Engineering, Kangwon National University, 25913 Samcheok, Republic of Korea
Search for more papers by this authorW. Hwang
Center for Nanoparticle Research, Institute for Basic Science (IBS), 08826 Seoul, Republic of Korea
School of Chemical and Biological Engineering, Seoul National University (SNU), 08826 Seoul, Republic of Korea
Search for more papers by this authorS. Kim
Center for Nanoparticle Research, Institute for Basic Science (IBS), 08826 Seoul, Republic of Korea
School of Chemical and Biological Engineering, Seoul National University (SNU), 08826 Seoul, Republic of Korea
Search for more papers by this authorJ. E. Park
Center for Nanoparticle Research, Institute for Basic Science (IBS), 08826 Seoul, Republic of Korea
School of Chemical and Biological Engineering, Seoul National University (SNU), 08826 Seoul, Republic of Korea
Search for more papers by this authorI. Choi
Division of Energy Engineering, Kangwon National University, 25913 Samcheok, Republic of Korea
Search for more papers by this authorCorresponding Author
Y.-H. Cho
Department of Chemical Engineering, Kangwon National University, 25913 Samcheok, Republic of Korea
Correspondence: Y.-H. Cho ([email protected]), Y.-E. Sung ([email protected]), Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of KoreaSearch for more papers by this authorCorresponding Author
Y.-E. Sung
Center for Nanoparticle Research, Institute for Basic Science (IBS), 08826 Seoul, Republic of Korea
School of Chemical and Biological Engineering, Seoul National University (SNU), 08826 Seoul, Republic of Korea
Correspondence: Y.-H. Cho ([email protected]), Y.-E. Sung ([email protected]), Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of KoreaSearch for more papers by this authorC.-Y. Ahn
Center for Nanoparticle Research, Institute for Basic Science (IBS), 08826 Seoul, Republic of Korea
School of Chemical and Biological Engineering, Seoul National University (SNU), 08826 Seoul, Republic of Korea
Search for more papers by this authorM. S. Lim
Department of Chemical Engineering, Kangwon National University, 25913 Samcheok, Republic of Korea
Search for more papers by this authorW. Hwang
Center for Nanoparticle Research, Institute for Basic Science (IBS), 08826 Seoul, Republic of Korea
School of Chemical and Biological Engineering, Seoul National University (SNU), 08826 Seoul, Republic of Korea
Search for more papers by this authorS. Kim
Center for Nanoparticle Research, Institute for Basic Science (IBS), 08826 Seoul, Republic of Korea
School of Chemical and Biological Engineering, Seoul National University (SNU), 08826 Seoul, Republic of Korea
Search for more papers by this authorJ. E. Park
Center for Nanoparticle Research, Institute for Basic Science (IBS), 08826 Seoul, Republic of Korea
School of Chemical and Biological Engineering, Seoul National University (SNU), 08826 Seoul, Republic of Korea
Search for more papers by this authorI. Choi
Division of Energy Engineering, Kangwon National University, 25913 Samcheok, Republic of Korea
Search for more papers by this authorCorresponding Author
Y.-H. Cho
Department of Chemical Engineering, Kangwon National University, 25913 Samcheok, Republic of Korea
Correspondence: Y.-H. Cho ([email protected]), Y.-E. Sung ([email protected]), Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of KoreaSearch for more papers by this authorCorresponding Author
Y.-E. Sung
Center for Nanoparticle Research, Institute for Basic Science (IBS), 08826 Seoul, Republic of Korea
School of Chemical and Biological Engineering, Seoul National University (SNU), 08826 Seoul, Republic of Korea
Correspondence: Y.-H. Cho ([email protected]), Y.-E. Sung ([email protected]), Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of KoreaSearch for more papers by this authorAbstract
A flow field represents an interesting research area related to polymer electrolyte membrane fuel cells (PEMFCs), as it is a component crucial for the distribution of gas-phase reactants. In this study, a metal foam was characterized and applied as a flow field in a PEMFC unit cell. In addition, the electrochemical performance of the metal foam was compared with that of the commonly used serpentine flow field. At a relative humidity (RH) of 100%, no significant difference in performance was observed between the metal foam and serpentine flow field. However, the performance of a single cell with the metal foam was superior to that of the common flow field under an RH of 20% under pressurized conditions. Furthermore, the factors affecting fuel cell performance by application of the flow field were discussed.
Supporting Information
Filename | Description |
---|---|
fuce201700042-sup-0001-misc_information.pdf1.2 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science 2014, 343, 1339.
- 2 D. Y. Chung, S. W. Jun, G. Yoon, S. G. Kwon, D. Y. Shin, P. Seo, J. M. Yoo, H. Shin, Y. H. Chung, H. Kim, B. S. Mun, K. S. Lee, N. S. Lee, S. J. Yoo, D. H. Lim, K. Kang, Y. E. Sung, T. Hyeon, J. Am. Chem. Soc. 2015, 137, 15478.
- 3 I. E. L. Stephens, A. S. Bondarenko, U. Grønbjerg, J. Rossmeisl, I. Chorkendorff, Energy Environ. Sci. 2012, 5, 6744.
- 4 J. Wu, H. Yang, Acc. Chem. Res. 2013, 46, 1848.
- 5 L. Zhang, L. T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S. I. Choi, J. Park, J. A. Herron, Z. Xie, M. Mavrikakis, Y. Xia, Science 2015, 349, 412.
- 6 Y. Zhou, K. Neyerlin, T. S. Olson, S. Pylypenko, J. Bult, H. N. Dinh, T. Gennett, Z. Shao, R. O'Hayre, Energy Environ. Sci. 2010, 3, 1437.
- 7 S. Gamburzev, A. J. Appleby, J. Power Sources 2002, 107, 5.
- 8 C.-H. Lee, Y.-B. Lee, K.-M. Kim, M.-G. Jeong, D.-S. Lim, Renewable Energy 2013, 54, 46.
- 9 S. Nam, D. Lee, J. Kim, D. G. Lee, Compos. Struct. 2015, 134, 124.
- 10 S.-H. Wang, W.-B. Lui, J. Peng, J.-S. Zhang, J. Fuel Cell Sci. Technol. 2013, 10, 041002.
- 11 S. Collong, R. Kouta, Int. J. Hydrogen Energy 2015, 40, 8248.
- 12 M. Gerbec, V. Jovan, J. Petrovčič, Int. J. Hydrogen Energy 2008, 33, 4147.
- 13 S. Yu, D. Jung, Renewable Energy 2008, 33, 2540.
- 14 M. A. Z. Antuñano, A. Encinas, J. H. García-Gallegos, A. D. Moller, A. M. d. Jesús, L. G. Arriaga, J. M. O. Ramírez, Fuel Cells 2015, 15, 639.
- 15 F. Barreras, A. Lozano, L. Valiño, C. Marín, A. Pascau, J. Power Sources 2005, 144, 54.
- 16 M. K. Debe, T. Herdtle, ECS Trans. 2006, 1, 581.
- 17 S.-H. Han, N.-H. Choi, Y.-D. Choi, Int. J. Hydrogen Energy 2014, 39, 2628.
- 18 O. J. Kwon, M. S. Kang, S. H. Ahn, I. Choi, K. U. Lee, J. H. Jeong, I.-S. Han, J. C. Yang, J. J. Kim, Int. J. Hydrogen Energy 2011, 36, 9799.
- 19 X. Li, I. Sabir, Int. J. Hydrogen Energy 2005, 30, 359.
- 20 M. Mehrpooya, M. Kheir Rouz, A. Nikfarjam, Ind. Eng. Chem. Res. 2015, 54, 3640.
- 21 B. P. Saripella, U. O. Koylu, M. C. Leu, J. Fuel Cell Sci. Technol. 2015, 12, 061007.
- 22 T. Sousa, M. Mamlouk, K. Scott, C. M. Rangel, Fuel Cells 2012, 12, 566.
- 23 S. Bhlapibul, K. Pruksathorn, Korean J. Chem. Eng. 2008, 25, 1226.
- 24 S. Shimpalee, V. Lilavivat, H. McCrabb, Y. Khunatorn, H. K. Lee, W. K. Lee, J. W. Weidner, Int. J. Hydrogen Energy 2016, 41, 13688.
- 25 R. Taherian, M. Nasr, Int. J. Energy Res. 2014, 38, 94.
- 26 J. Wang, H. Wang, Fuel Cells 2012, 12, 989.
- 27 R. Taherian, J. Power Sources 2014, 265, 370.
- 28 H. Wang, J. A. Turner, Fuel Cells 2010, 10, 510.
- 29 A. Bansiddhi, T. D. Sargeant, S. I. Stupp, D. C. Dunand, Acta Biomater. 2008, 4, 773.
- 30 X. Jin, B. Shi, L. Zheng, X. Pei, X. Zhang, Z. Sun, Y. Du, J. H. Kim, X. Wang, S. Dou, K. Liu, L. Jiang, Adv. Funct. Mater. 2014, 24, 2721.
- 31 L. P. Lefebvre, J. Banhart, D. C. Dunand, Adv. Eng. Mater. 2008, 10, 775.
- 32 R. Singh, P. D. Lee, R. J. Dashwood, T. C. Lindley, Mater. Technol. 2010, 25, 127.
- 33 F. Stergioudi, E. Kaprara, K. Simeonidis, D. Sagris, M. Mitrakas, G. Vourlias, N. Michailidis, Mater. Des. 2015, 87, 287.
- 34 C. E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa, M. Mabuchi, J. Mater. Res. 2002, 17, 2633.
- 35 D.-H. Nam, R.-H. Kim, C.-L. Lee, H.-S. Kwon, J. Electrochem. Soc. 2012, 159, A1822.
- 36 N. Feng, D. Hu, P. Wang, X. Sun, X. Li, D. He, Phys. Chem. Chem. Phys. 2013, 15, 9924.
- 37 H. Choi, O.-H. Kim, M. Kim, H. Choe, Y.-H. Cho, Y.-E. Sung, ACS Appl. Mater. Interfaces 2014, 6, 7665.
- 38 S. Jing, H. Jiang, Y. Hu, C. Li, J. Mater. Chem. A 2014, 2, 16360.
- 39 W. Q. Li, Z. G. Qu, Y. L. He, Y. B. Tao, J. Power Sources 2014, 255, 9.
- 40 D. Mazouzi, D. Reyter, M. Gauthier, P. Moreau, D. Guyomard, L. Roué, B. Lestriez, Adv. Energy Mater. 2014, 4, 1301718.
- 41 S. H. Park, Y.-H. Cho, M. Choi, H. Choi, J. S. Kang, J. H. Um, J.-W. Choi, H. Choe, Y.-E. Sung, Surf. Coat. Technol., Part C 2014, 259, 560.
- 42 Q. Zhang, H. Chen, J. Wang, D. Xu, X. Li, Y. Yang, K. Zhang, ChemSusChem 2014, 7, 2325.
- 43 G. Chen, J. Yang, J. Tang, X. Zhou, RSC Adv. 2015, 5, 23067.
- 44 C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, Angew. Chem. Int. Ed. 2015, 54, 9351.
- 45 Q. Zhao, X. Hu, K. Zhang, N. Zhang, Y. Hu, J. Chen, Nano Lett. 2015, 15, 721–726.
- 46 A. Sivanantham, P. Ganesan, S. Shanmugam, Adv. Funct. Mater. 2016, 26, 4661.
- 47 J. H. Um, M. Choi, H. Park, Y.-H. Cho, D. C. Dunand, H. Choe, Y.-E. Sung, Sci. Rep. 2016, 6, 18626.
- 48 B. You, N. Jiang, M. Sheng, M. W. Bhushan, Y. Sun, ACS Catal. 2016, 6, 714.
- 49 W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Chem. Commun. 2016, 52, 1486.
- 50 H. Park, J. H. Um, H. Choi, W.-S. Yoon, Y.-E. Sung, H. Choe, Appl. Surf. Sci. 2017, 399, 132.
- 51 A. Kumar, R. G. Reddy, J. Power Sources 2003, 114, 54.
- 52 A. Kumar, R. G. Reddy, J. Power Sources 2004, 129, 62.
- 53 S. Arisetty, A. K. Prasad, S. G. Advani, J. Power Sources 2007, 165, 49.
- 54 B.-T. Tsai, C.-J. Tseng, Z.-S. Liu, C.-H. Wang, C.-I. Lee, C.-C. Yang, S.-K. Lo, Int. J. Hydrogen Energy 2012, 37, 13060.
- 55 C.-J. Tseng, B. T. Tsai, Z.-S. Liu, T.-C. Cheng, W.-C. Chang, S.-K. Lo, Energy Convers. Manage. 2012, 62, 14.
- 56 C.-J. Tseng, Y.-J. Heush, C.-J. Chiang, Y.-H. Lee, K.-R. Lee, Int. J. Hydrogen Energy 2016, 41, 16196.
- 57 T. A. Zawodzinski, T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, S. Gottesfeld, J. Electrochem. Soc. 1993, 140, 1981.
- 58 F. N. Büchi, G. G. Scherer, J. Electrochem. Soc. 2001, 148, A183.
- 59 X.-D. Wang, Y.-Y. Duan, W.-M. Yan, F.-B. Weng, J. Power Sources 2008, 176, 247.
- 60 D. H. Jeon, K. N. Kim, S. M. Baek, J. H. Nam, Int. J. Hydrogen Energy 2011, 36, 12499.
- 61 N. Miyake, J. S. Wainright, R. F. Savinell, J. Electrochem. Soc. 2001, 148, A898.
- 62 A. K. Sahu, G. Selvarani, S. Pitchumani, P. Sridhar, A. K. Shukla, J. Electrochem. Soc. 2007, 154, B123.
- 63 C. Wang, E. Chalkova, J. K. Lee, M. V. Fedkin, S. Komarneni, S. N. Lvov, J. Electrochem. Soc. 2011, 158, B690.
- 64 M. Choun, S. Chung, H. Jeon, S. Uhm, J. Lee, Electrochem. Commun. 2012, 24, 108.
- 65 N. Inoue, M. Uchida, M. Watanabe, H. Uchida, Electrochim. Acta 2013, 88, 807.
- 66 I. Choi, H. Lee, K. G. Lee, S. H. Ahn, S. J. Lee, H.-J. Kim, H.-N. Lee, O. J. Kwon, Appl. Catal., B 2015, 168–169, 220.
- 67 T. Kitahara, H. Nakajima, K. Okamura, J. Power Sources 2015, 283, 115.
- 68 J. Zhang, C. Song, J. Zhang, R. Baker, L. Zhang, J. Electroanal. Chem. 2013, 688, 130.
- 69 D. K. Kim, J. S. Koh, M. S. Kim, H. H. Song, Int. J. Hydrogen Energy 2015, 40, 12370.
- 70 D. Rohendi, E. H. Majlan, A. B. Mohamad, W. R. W. Daud, A. A. H. Kadhum, L. K. Shyuan, Int. J. Hydrogen Energy 2015, 40, 10960.
- 71 J. Wind, R. Späh, W. Kaiser, G. Böhm, J. Power Sources 2002, 105, 256.
- 72
X.-Z. Yuan, C. Song, H. Wang, J. Zhang, in Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications, Springer London, London, 2010, pp. 1.
10.1007/978-1-84882-846-9 Google Scholar
- 73 Y. Tang, W. Yuan, M. Pan, Z. Wan, Int. J. Hydrogen Energy 2010, 35, 9661.
- 74 J. Banhart, Progress in Materials Science 2001, 46, 559.