Thermal Conductivity and Contact Resistance of Compressed Gas Diffusion Layer of PEM Fuel Cell
I. Nitta
Helsinki University of Technology, Laboratory of Advanced Energy Systems, P.O. Box 2200, 02015 TKK, Finland
Search for more papers by this authorO. Himanen
VTT Technical Research Center of Finland, Fuel Cells, P.O. Box 1000, 02044 VTT, Finland
Search for more papers by this authorM. Mikkola
Helsinki University of Technology, Laboratory of Advanced Energy Systems, P.O. Box 2200, 02015 TKK, Finland
Search for more papers by this authorI. Nitta
Helsinki University of Technology, Laboratory of Advanced Energy Systems, P.O. Box 2200, 02015 TKK, Finland
Search for more papers by this authorO. Himanen
VTT Technical Research Center of Finland, Fuel Cells, P.O. Box 1000, 02044 VTT, Finland
Search for more papers by this authorM. Mikkola
Helsinki University of Technology, Laboratory of Advanced Energy Systems, P.O. Box 2200, 02015 TKK, Finland
Search for more papers by this authorAbstract
This paper discusses the effect of compression pressure on the mechanical and thermal properties of gas diffusion layers (GDL). The stress–strain curve of the GDL revealed one nonlinear and two piecewise linear regions within the compression pressure range of 0–5.5 MPa. The thermal conductivity of the compressed GDL seems to be independent of the compression pressure and was determined to be 1.18 ± 0.11 W m–1 K–1 at room temperature. The thermal contact resistance between the GDL and graphite was evaluated by augmenting experiments with computer modelling. The thermal contact resistance decreased nonlinearly with increasing compression pressure. According to the results here, the thermal bulk resistance of the GDL is comparable to the thermal contact resistance between the GDL and graphite. A simple one-dimensional model predicted a temperature drop of 1.7–4.4 °C across the GDL and catalyst layer depending on compression pressures.
References
- 1 G. Lin, W. He, T. V. Nguyen, J. Electrochem. Soc. 2004, 151, A1999.
- 2 G. Lin, T. V. Nguyen, J. Electrochem. Soc. 2005, 152, A1942.
- 3 D. Natarajan, T. V. Nguyen, J. Electrochem. Soc. 2001, 148, A1324.
- 4 D. Natarajan, T. V. Nguyen, J. Power Sources 2003, 115, 66.
- 5 N. P. Siegel, M. W. Ellis, D. J. Nelson, M. R. Spakovsky, J. Power Sources 2004, 128, 173.
- 6 Z. Liu, Z. Mao, C. Wang, J. Power Sources 2006, 158, 1229.
- 7 Z. H. Wang, C. Y. Wang, K. S. Chen, J. Power Sources 2001, 94, 40.
- 8 D. Bevers, R. Rogers, M. V. Bradke, J. Power Sources 1996, 63, 193.
- 9 J. H. Nam, M. Kaviany, Int. J. Heat Mass Transfer 2003, 46, 4595.
- 10 K. Wiezel, P. Gode, G. Lindbergh, J. Electrochem. Soc. 2006, 153, A759.
- 11 M. Grujicic, K. M. Chittajallu, Chem. Eng. Sci. 2004, 59, 5883.
- 12 F. Y. Zhang, X. G. Yang, C. Y. Wang, J. Electrochem. Soc. 2006, 153, A225.
- 13 U. Pasaogullari, C. Y. Wang, J. Electrochem. Soc. 2004, 151, A399.
- 14 M. Coppo, N. P. Siegel, M. R. Spakovsky, J. Power Sources 2006, 159, 560.
- 15 K. Z. Yao, K. Kran, K. B. McAuley, P. Oosthuizen, B. Peppley, T. Xie, Fuel. Cell. 2004, 4, 3.
- 16 M. Noponen, E. Birgersson, J. Ihonen, M. Vynnycky, A. Lundblad, G. Lindbergh, Fuel Cells 2004, 4, 365.
- 17 H. Ju, C. Y. Wang, S. Cleghorn, U. Beuscher, J. Electrochem. Soc. 2005, 152, A1645.
- 18 J. Ihonen, Ph.D. Thesis, KTH, Sweden, 2003.
- 19 M. Cai, M. S. Ruthkosky, B. Merzougui, S. Swathirajan, M. P. Balogh, S. H. Oh, J. Power Sources 2006, 160, 977.
- 20 W. K. Lee, C. H. Ho, J. W. V. Zee, M. Murthy, J. Power Sources 1999, 84, 45.
- 21 J. Ge, A. Higier, H. Liu, J. Power Sources 2006, 159, 922.
- 22 S. J. Lee, C. D. Hsu, C. H. Huang, J. Power Sources 2005, 145, 353.
- 23 J. Ihonen, M. Mikkola, G. Lindbergh, J. Electrochem. Soc. 2004, 151, A1152.
- 24 M. Mathias, J. Roth, J. Fleming, W. Lehnert, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 3: Fuel Cell Technology and Applications (Eds. W. Vielstich, H. A. Gasteiger, A. Lamm), John Wiley & Sons Ltd., New York, NY, USA, 2003, pp. 517.
- 25 T. Tomimura, S. Nakamura, H. Nonami, H. Saito, Proceedings 7th IEEE 7th International Conference on Solid Dielectrics, Eindhoven, Netherlands, 2001, pp. 101.
- 26 N. Cunningham, M. Lefévre, G. Lebrun, J. P. Dodelet, J. Power Sources 2005, 143, 93.
- 27 V. Mishra, F. Yang, R. Pitchumani, J. Fuel Cell Sci. Technol. 2004, 1, 2.
- 28 H. Wang, J. A. Turner, J. Power Sources 2004, 128, 193.
- 29 J. Ihonen, F. Jaouen, G. Lindbergh, G. Sundholm, Electrochim. Acta 2001, 46, 2899.
- 30 P. M. Wilde, M. Mandle, M. Murata, N. Berg, Fuel Cells 2004, 4, 180.
- 31 A. Bazylak, D. Sinton, Z. S. Liu, N. Djilali, J. Power Sources 2007, 163, 784.
- 32 C. Lim, C. Y. Wang, J. Power Sources 2003, 113, 145.
- 33 E. C. Kumbur, K. V. Sharp, M. M. Mench, J. Electrochem. Soc. 2007, 154, B1305.
- 34 H. Dohle, R. Jung, N. Kimiaie, J. Mergel, M. Müller, J. Power Sources 2003, 124, 371.
- 35 C. Lee, W. Mérida, J. Power Sources 2007, 164, 141.
- 36 T. Matsuura, M. Kato, M. Hori, J. Power Sources 2006, 161, 74.
- 37 C. Xu, T. S. Zhao, Q. Ye, Electrochim. Acta 2006, 51, 5524.
- 38 S. Escribano, J. F. Blachot, J. Etheve, A. Morin, R. Mosdale, J. Power Sources 2006, 156, 8.
- 39 P. Zhou, C. W. Wu, G. J. Ma, J. Power Sources 2007, 163, 874.
- 40 P. Zhou, C. W. Wu, G. J. Ma, J. Power Sources 2006, 159, 1115.
- 41 P. Zhou, C. W. Wu, J. Power Sources 2007, 170, 93.
- 42 W. Sun, B. A. Peppley, K. Karan, J. Power Sources 2005, 144, 42.
- 43 V. P. Schulz, J. Becker, A. Wiegmann, P. P. Mukherjee, C. Y Wang, J. Electrochem. Soc. 2007, 154, B419.
- 44 W. Q. Tao, C. H. Min, X. L. Liu, Y. L. He, B. H. Yin, W. Jiang, J. Power Sources 2006, 160, 359.
- 45 C. H. Min, Y. L. He, X. L. Liu, B. H. Yin, W. Jiang, W. Q. Tao, J. Power Sources 2006, 160, 374.
- 46 H. Ju, C. Y. Wang, J. Electrochem. Soc. 2004, 151, A1954.
- 47 T. Hottinen, O. Himanen, S. Karvonen, I. Nitta, J. Power Sources 2007, 171, 113.
- 48 I. Nitta, T. Hottinen, O. Himanen, M. Mikkola, J. Power Sources 2007, 171, 26.
- 49 M. Khandelwal, M. M. Mench, J. Power Sources 2006, 161, 1106.
- 50 P. J. S. Vie, S. Kjelstrup, Electrochim. Acta 2004, 49, 1069.
- 51 A. Caillarda, P. Braulta, J. Mathiasa, C. Charlesb, R. W. Boswellb, T. Sauvage, Surf. Coatings Technol. 2005, 200, 391.
- 52 K. L. Huang, Y. C Lai, C. H Tsai, J. Power Sources 2006, 156, 224.
- 53 M. Yamaguchi, N. Matsuo, S. Uozumi, Japanese Patent, H6-84529, 1994 (in Japanese).
- 54 K. Kodama, Japanese Patent, P2004-178893A, 2004 (in Japanese).
- 55 J. T. Gostick, M. W. Fowler, M. A. Ioannidis, M. D. Pritzker, Y. M. Volfkovich, A. Sakars, J. Power Sources 2006, 156, 375.
- 56 A. Jena, K. Gupta, Proceedings 41st Power Sources Conference, Philadelphia, PA, USA, 2005, pp. 379.
- 57 J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan, J. Itescu, J. Membr. Sci. 2005, 261, 98.
- 58 R. Taipalus, T. Harmia, M. Q. Zhang, K. Friedrich, Compos. Sci. Technol. 2001, 61, 801.
- 59 J. Liesegang, B. C. Senn, P. J. Pigram, E. T. Kang, K. L. Tan, K. G. Neoh, Surf. Interface Anal. 1999, 28, 20.
- 60 S. Cleghorn, J. Kolde, W. Liu, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Volume 3: Fuel Cell Technology and Applications (Eds. W. Vielstich, H. A. Gasteiger, A. Lamm), John Wiley & Sons Ltd., New York, NY, USA 2003, pp. 566.
- 61 I. Nitta, O. Himanen, M. Mikkola, Electrochem. Commun. 2008, 10, 47.
- 62 I. Nitta, S. Karvonen, O. Himanen, M. Mikkola, Fuel Cells 2007, submitted.