Impact of oxygen-defects induced electrochemical properties of three-dimensional flower-like CoMoO4 nanoarchitecture for supercapacitor applications
Periyasamy Sivakumar
Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University Seoul-Campus, Seoul, Republic of Korea
Search for more papers by this authorC. Justin Raj
Physics Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai Campus, Chennai, India
Search for more papers by this authorLoganathan Kulandaivel
Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University Seoul-Campus, Seoul, Republic of Korea
Search for more papers by this authorJeongWon Park
Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University Seoul-Campus, Seoul, Republic of Korea
Search for more papers by this authorCorresponding Author
Hyun Jung
Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University Seoul-Campus, Seoul, Republic of Korea
Research Center for Photoenergy Harvesting & Conversion Technology, Dongguk University Seoul-Campus, Seoul, Republic of Korea
Correspondence
Hyun Jung, Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry Dongguk, University Seoul-Campus, Jung-gu, Seoul 04620, Republic of Korea.
Email: [email protected]
Search for more papers by this authorPeriyasamy Sivakumar
Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University Seoul-Campus, Seoul, Republic of Korea
Search for more papers by this authorC. Justin Raj
Physics Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai Campus, Chennai, India
Search for more papers by this authorLoganathan Kulandaivel
Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University Seoul-Campus, Seoul, Republic of Korea
Search for more papers by this authorJeongWon Park
Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University Seoul-Campus, Seoul, Republic of Korea
Search for more papers by this authorCorresponding Author
Hyun Jung
Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University Seoul-Campus, Seoul, Republic of Korea
Research Center for Photoenergy Harvesting & Conversion Technology, Dongguk University Seoul-Campus, Seoul, Republic of Korea
Correspondence
Hyun Jung, Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry Dongguk, University Seoul-Campus, Jung-gu, Seoul 04620, Republic of Korea.
Email: [email protected]
Search for more papers by this authorFunding information: National Research Foundation of Korea, Grant/Award Number: NRF-2016R1D1A1B01009640
Summary
The rational strategy to design the well-ordered morphology of the metal oxides with defective engineering and tailoring them into specific electrode fabrication can significantly improve their electrochemical properties for high-performance energy storage systems. Herein, we adopted an effective strategy to introduce oxygen-defect into the well-ordered three-dimensional flower-like CoMoO4 nanoarchitecture. The Co-Mo precursor leads to the introduction of oxygen-defects into the CoMoO4 (rCMO) nanoarchitecture during the heat-treatment under an oxygen-controlled environment (argon). The oxygen-defects in the material could facilitate abundant electroactive sites and intrinsically enhance the conductivity and supercapacitor performance. The oxygen-defect CoMoO4 (rCMO) exhibits a specific capacity of 531 mAh g−1 at a current density of 1 A g−1 compared to the pristine CoMoO4 (CMO; ambient atmosphere) of 322 mAh g−1 under the same current density. Meanwhile, the fabricated hybrid supercapacitor (HSC) of rCMO//AC provides a maximum specific capacitance of 159 F g−1. Further, it distributes an energy density of 49.87 Wh kg−1 at the power density of 845.45 W kg−1 with an excellent cyclic life of ~91.03% over 10 000 cycles.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Supporting Information
Filename | Description |
---|---|
er8367-sup-0001-supinfo.docxWord 2007 document , 2.9 MB | Appendix S1. Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Cai Z, Bi Y, Hu E, et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv Energy Mater. 2018; 8: 1701694. doi:10.1002/aenm.201701694
- 2Lu X, Zeng Y, Yu M, et al. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric Supercapacitors. Adv Mater. 2014; 26: 3148-3155. doi:10.1002/adma.201305851
- 3Hwang S-K, Patil SJ, Chodankar NR, Huh YS, Han Y-K. An aqueous high-performance hybrid supercapacitor with MXene and polyoxometalates electrodes. Chem Eng J. 2022; 427:131854. doi:10.1016/j.cej.2021.131854
- 4Zhang GC, Feng M, Li Q, et al. High energy density in combination with high cycling stability in hybrid Supercapacitors. ACS Appl Mater Interfaces. 2022; 14: 2674-2682. doi:10.1021/acsami.1c17285
- 5Zhang H, Han J, Xu J, Ling Y, Ou X. Self-assembled NiCo2O4 microspheres for hybrid supercapacitor applications. J Mater Sci. 2022; 57: 5566-5576. doi:10.1007/s10853-022-06967-6
- 6Iqbal MZ, Aziz U. Supercapattery: merging of battery-supercapacitor electrodes for hybrid energy storage devices. J Energy Storage. 2022; 46:103823. doi:10.1016/j.est.2021.103823
- 7Li M, Luo Y, Jia C, et al. Facile synthesis of bimetal nickel cobalt phosphate nanostructures for high-performance hybrid supercapacitors. J Alloys Compd. 2022; 893:162340. doi:10.1016/j.jallcom.2021.162340
- 8Wu Z, Yang X, Gao H, et al. Controllable synthesis of ZnCo2O4@NiCo2O4 heterostructures on Ni foam for hybrid supercapacitors with superior performance. J Alloys Compd. 2022; 891:162053. doi:10.1016/j.jallcom.2021.162053
- 9Gao Y, Liu K, Wu Y, Li C, Lü Q, Zu G. A strategy of combination reaction to improve electrochemical performance in two-dimensional Mo1−xWxSe2 battery-type electrode materials. Ceram Int. 2022. doi:10.1016/j.ceramint.2021.12.116
- 10Mule AR, Ramulu B, Yu JS. Prussian-blue analogue-derived hollow structured Co3S4/CuS2/NiS2 Nanocubes as an advanced battery-type electrode material for high-performance hybrid supercapacitors. Small. 2022; 18:2105185. doi:10.1002/smll.202105185
- 11Adaikalam K, Ramesh S, Santhoshkumar P, Kim HS, Park H-C, Kim H-S. MnO2/Co3O4 with N and S co-doped graphene oxide bimetallic nanocomposite for hybrid supercapacitor and photosensor applications. Int J Energy Res. 2022; 46: 4494-4505. doi:10.1002/er.7443
- 12Pramitha A, Raviprakash Y. Recent developments and viable approaches for high-performance supercapacitors using transition metal-based electrode materials. J Energy Storage. 2022; 49:104120. doi:10.1016/j.est.2022.104120
- 13Deyab NM, Taha MM, Allam NK. A mesoporous ternary transition metal oxide nanoparticle composite for high-performance asymmetric supercapacitor devices with high specific energy. Nanoscale Adv. 2022; 4: 1387-1393. doi:10.1039/D1NA00694K
- 14Zhu X. Recent advances of transition metal oxides and chalcogenides in pseudo-capacitors and hybrid capacitors: a review of structures, synthetic strategies, and mechanism studies. J Energy Storage. 2022; 49:104148. doi:10.1016/j.est.2022.104148
- 15Sivakumar P, Raj CJ, Park J, Jung H. Facile fabrication of flower-like binary metal oxide as a potential electrode material for high-performance hybrid supercapacitors. Ceram Int. 2022; 48: 9459-9467. doi:10.1016/j.ceramint.2021.12.143
- 16Imranullah M, Hussain T, Ahmad R, Shuaib U, Agboola PO, Shakir I. Reduced graphene oxide/hierarchal spinel nickel cobaltite nanoflowers composites for supercapacitor electrodes with ultrahigh capacitive and excellent rate performance. Ceram Int. 2022; 48: 12460-12466. doi:10.1016/j.ceramint.2022.01.111
- 17Cai D, Cao Q, Du J, et al. Oxygen vacancies enhanced NiCo2O4 nanoarrays on carbon cloth as cathode for flexible supercapacitors with excellent cycling stability. Batter Supercaps. 2022; 5:e202100344. doi:10.1002/batt.202100344
- 18Raj CJ, Manikandan R, Yu KH, et al. Engineering thermally activated NiMoO4 nanoflowers and biowaste derived activated carbon-based electrodes for high-performance supercapatteries. Inorg Chem Front. 2020; 7: 369-384. doi:10.1039/C9QI01085H
- 19Sivakumar P, Raj CJ, Opar DO, Park J, Jung H. Two dimensional layered nickel cobaltite nanosheets as an efficient electrode material for high-performance hybrid supercapacitor. Int J Energy Res. 2021; 45: 16134-16144. doi:10.1002/er.6845
- 20Wang R, Li F, Ji J, Wang F. CoMoO4 enhanced anodized cobalt oxide nanotube as an efficient electrocatalyst for hydrogen evolution reaction. Appl Surf Sci. 2022; 579:152128. doi:10.1016/j.apsusc.2021.152128
- 21Mohammadi MA, Arvand M, Daneshvar S. Facile stepwise hydrothermal synthesis of hierarchical CoMoO4/CoMoO4 core/shell dandelion-like nanoarrays: a promising binder-free positive electrode for high-performance asymmetric supercapacitors. J Electroanal Chem. 2022; 904:115934. doi:10.1016/j.jelechem.2021.115934
- 22Xie L-J, Li C-F, Zhao J-W, et al. Incorporating metal co into CoMoO4/Co2Mo3O8 heterointerfaces with rich-oxygen vacancies for efficient hydrogen evolution catalysis. Chem Eng J. 2022; 430:133119. doi:10.1016/j.cej.2021.133119
- 23Amanulla AM, Shahina SJ, Sundaram R, et al. Antibacterial, magnetic, optical and humidity sensor studies of β-CoMoO4 - Co3O4 nanocomposites and its synthesis and characterization. J Photochem Photobiol B Biol. 2018; 183: 233-241. doi:10.1016/j.jphotobiol.2018.04.034
- 24Prabhu S, Sohila S, Navaneethan D, Harish S, Navaneethan M, Ramesh R. Three dimensional flower-like CuO/Co3O4/r-GO heterostructure for high-performance asymmetric supercapacitors. J Alloys Compd. 2020; 846:156439. doi:10.1016/j.jallcom.2020.156439
- 25Karuppasamy K, Vikraman D, Hussain S, et al. Unveiling a binary metal selenide composite of CuSe polyhedrons/CoSe2 nanorods decorated graphene oxide as an active electrode material for high-performance hybrid supercapacitors. Chem Eng J. 2022; 427:131535. doi:10.1016/j.cej.2021.131535
- 26Prasad K, Reddy GR, Manjula G, et al. Morphological transformation of rod-like to pebbles-like CoMoO4 microstructures for energy storage devices. Chem Phys. 2022; 553:111382. doi:10.1016/j.chemphys.2021.111382
- 27Ma Y, Zhang L, Yan Z, Cheng B, Yu J, Liu T. Sandwich-Shell structured CoMn2O4/C hollow nanospheres for performance-enhanced sodium-ion hybrid supercapacitor. Adv Energy Mater. 2022; 12:2103820. doi:10.1002/aenm.202103820
- 28Hussain S, Khan AJ, Arshad M, et al. Charge storage in binder-free 2D-hexagonal CoMoO4 nanosheets as a redox active material for pseudocapacitors. Ceram Int. 2021; 47: 8659-8667. doi:10.1016/j.ceramint.2020.11.237
- 29Zhang Y, Hu J, Zhang C, et al. Electrochemical synthesis of ammonia from nitrogen catalyzed by CoMoO4 nanorods under ambient conditions. J Mater Chem A. 2021; 9: 5060-5066. doi:10.1039/D0TA08983D
- 30Ramesh S, Lee Y-J, Shin K, et al. Effect of ruthenium oxide on the capacitance and gas-sensing performances of cobalt oxide @nitrogen-doped graphene oxide composites. Int J Energy Res. 2021; 45: 19547-19559. doi:10.1002/er.7049
- 31Cao Z, Liu C, Huang Y, et al. Oxygen-vacancy-rich NiCo2O4 nanoneedles electrode with poor crystallinity for high energy density all-solid-state symmetric supercapacitors. J Power Sources. 2020; 449:227571. doi:10.1016/j.jpowsour.2019.227571
- 32Sivakumar P, Raj CJ, Park J, Jung H. Synergistic effects of nanoarchitecture and oxygen vacancy in nickel molybdate hollow sphere towards a high-performance hybrid supercapacitor. Int J Energy Res. 2021; 45: 21516-21526. doi:10.1002/er.7156
- 33Ding X, Cui X, Sohail A, et al. Defects engineering induced ultrahigh magnetization in rare earth element Nd-doped MoS2. Adv Quantum Technol. 2021; 4:2000093. doi:10.1002/qute.202000093
- 34Fan L, Zhao J, Jing F, et al. Fabrication of oxygen-vacancy abundant MnO2 nanowires@ NiMnxOy−δ nanosheets core-shell heterostructure for capacity supercapacitors. J Energy Storage. 2022; 52:104845. doi:10.1016/j.est.2022.104845
- 35Zhang G, Chen M, Li C, et al. Surface spinel and interface oxygen vacancies enhanced lithium-rich layered oxides with excellent electrochemical performances. Chem Eng J. 2022; 443:136434. doi:10.1016/j.cej.2022.136434
- 36Li Y, Li X, Duan H, et al. Aerogel-structured MnO2 cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries. Chem Eng J. 2022; 441:136008. doi:10.1016/j.cej.2022.136008
- 37Wang C, Sui G, Guo D, et al. Oxygen vacancies-rich NiCo2O4−4x nanowires assembled on porous carbon derived from cigarette ash: a competitive candidate for hydrogen evolution reaction and supercapacitor. J Energy Storage. 2022; 50:104280. doi:10.1016/j.est.2022.104280
- 38Liu F, Wang C, Wang L, et al. Oxygen-vacancy-rich NiMnZn-layered double hydroxide nanosheets married with Mo2CTx MXene for high-efficiency all-solid-state hybrid supercapacitors. ACS Appl Energy Mater. 2022; 5: 3346-3358. doi:10.1021/acsaem.1c03978
- 39Shi Y, Liu T, Zhao Y, et al. Tunable oxygen vacancies of cobalt oxides for efficient gas sensing application. Sensors Actuators B Chem. 2022; 350:130860. doi:10.1016/j.snb.2021.130860
- 40Jing F, Ma Z, Wang J, Fan Y, Qin X, Shao G. Oxygen vacancy inducing phase transition during charge storage in MnOx@rGO supercapacitor electrode. Chem Eng J. 2022; 435:135103. doi:10.1016/j.cej.2022.135103
- 41Ma Q, Cui F, Zhang J, Qi X, Cui T. Surface engineering of Co3O4 nanoribbons forming abundant oxygen-vacancy for advanced supercapacitor. Appl Surf Sci. 2022; 578:152001. doi:10.1016/j.apsusc.2021.152001
- 42Zeng Y, Lai Z, Han Y, Zhang H, Xie S, Lu X. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite Nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv Mater. 2018; 30:1802396. doi:10.1002/adma.201802396
- 43Kim BC, Manikandan R, Yu KH, et al. Efficient supercapattery behavior of mesoporous hydrous and anhydrous cobalt molybdate nanostructures. J Alloys Compd. 2019; 789: 256-265. doi:10.1016/j.jallcom.2019.03.033
- 44Sivakumar P, Kulandaivel L, Park J, Raj CJ, Ramesh R, Jung H. Rational design and fabrication of one-dimensional hollow cuboid-like FeMoO4 architecture as a high performance electrode for hybrid supercapacitor. Ceram Int. 2022. in Press. doi:10.1016/j.ceramint.2022.05.064
- 45Sivakumar P, Raj CJ, Ramesh R, Kulandaivel L, Park JW, Jung H. Influence of heat-treatment temperature on the improvement of the electrochemical performance of CoMoO4 nanomaterials for hybrid supercapacitor application. Ceram Int. 2022. in Press. doi:10.1016/j.ceramint.2022.04.210
- 46Xu J, Gu S, Fan L, Xu P, Lu B. Electrospun lotus root-like CoMoO4@graphene nanofibers as high-performance anode for lithium ion batteries. Electrochim Acta. 2016; 196: 125-130. doi:10.1016/j.electacta.2016.01.228
- 47Xia X, Lei W, Hao Q, Wang W, Wang X. One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim Acta. 2013; 99: 253-261. doi:10.1016/j.electacta.2013.03.131
- 48Xu X, Shen J, Li N, Ye M. Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance. J Alloys Compd. 2014; 616: 58-65. doi:10.1016/j.jallcom.2014.07.047
- 49Padmanathan N, Shao H, Selladurai S, Glynn C, O'Dwyer C, Razeeb KM. Pseudocapacitance of α-CoMoO4 nanoflakes in non-aqueous electrolyte and its bi-functional electro catalytic activity for methanol oxidation. Int J Hydrog Energy. 2015; 40: 16297-16305. doi:10.1016/j.ijhydene.2015.09.127
- 50Zhang A, Gao R, Hu L, et al. Rich bulk oxygen vacancies-engineered MnO2 with enhanced charge transfer kinetics for supercapacitor. Chem Eng J. 2021; 417:129186. doi:10.1016/j.cej.2021.129186
- 51Du X, Ma G, Zhang X. Oxygen vacancy-confined CoMoO4@CoNiO2 nanorod arrays for oxygen evolution with improved performance. Dalton Trans. 2019; 48: 10116-10121. doi:10.1039/C9DT01378D
- 52Ma X, Wei B, Yuan M, et al. Self-supported phosphorus-doped CoMoO4 rod bundles for efficient hydrogen evolution. J Mater Sci. 2020; 55: 6502-6512. doi:10.1007/s10853-020-04448-2
- 53Lin L, Chen S, Deng T, Zeng W. Oxygen-deficient stannic oxide/graphene for ultrahigh-performance supercapacitors and gas sensors. Nanomaterials. 2021; 11: 372. doi:10.3390/nano11020372
- 54Chen S, Huang D, Liu D, et al. Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Appl Catal B Environ. 2021; 291:120065. doi:10.1016/j.apcatb.2021.120065
- 55Chi K, Zhang Z, Lv Q, et al. Well-ordered oxygen-deficient CoMoO4 and Fe2O3 nanoplate arrays on 3D graphene foam: toward flexible asymmetric supercapacitors with enhanced capacitive properties. ACS Appl Mater Interfaces. 2017; 9: 6044-6053. doi:10.1021/acsami.6b14810
- 56Zhai P, Zhang Y, Wu Y, et al. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. Nat Commun. 2020; 11: 5462. doi:10.1038/s41467-020-19214-w
- 57Liu P, Ran J, Xia B, Xi S, Gao D, Wang J. Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn–air batteries. Nano-Micro Lett. 2020; 12: 68. doi:10.1007/s40820-020-0406-6
- 58Yan D, Wang W, Luo X, Chen C, Zeng Y, Zhu Z. NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor. Chem Eng J. 2018; 334: 864-872. doi:10.1016/j.cej.2017.10.128
- 59Liu S, Kang L, Hu J, et al. Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state Supercapacitors. ACS Energy Lett. 2021; 6: 3011-3019. doi:10.1021/acsenergylett.1c01373
- 60Zhang Z, Zhang H, Zhang X, et al. Facile synthesis of hierarchical CoMoO4@NiMoO4 core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. J Mater Chem A. 2016; 4: 18578-18584. doi:10.1039/C6TA06848K
- 61Long H, Liu T, Zeng W, Yang Y, Zhao S. CoMoO4 nanosheets assembled 3D-frameworks for high-performance energy storage. Ceram Int. 2018; 44: 2446-2452. doi:10.1016/j.ceramint.2017.10.216
- 62Li M, Wang J, Wang F, et al. Construction of internal and external defect electrode materials based on hollow manganese-cobalt-nickel sulfide nanotube arrays. Appl Surf Sci. 2021; 568:150900. doi:10.1016/j.apsusc.2021.150900
- 63Luo Z, Shu D, Yi F, et al. Urchin-like NiCo2O4 hollow microspheres with oxygen vacancies synthesized by self-template for supercapacitor. New J Chem. 2021; 45: 22748-22757. doi:10.1039/D1NJ04153C