Review on thermal performance of heat exchanger using phase change material
P. Das
School of Mechanical Engineering, KIIT University Bhubaneswar, Bhubaneswar, India
Search for more papers by this authorCorresponding Author
S. P. Kar
School of Mechanical Engineering, KIIT University Bhubaneswar, Bhubaneswar, India
Correspondence
S. P. Kar, School of Mechanical Engineering, KIIT University Bhubaneswar, Bhubaneswar, Odisha 751024, India.
Email: [email protected]
Search for more papers by this authorR. K. Sarangi
School of Mechanical Engineering, KIIT University Bhubaneswar, Bhubaneswar, India
Search for more papers by this authorP. Das
School of Mechanical Engineering, KIIT University Bhubaneswar, Bhubaneswar, India
Search for more papers by this authorCorresponding Author
S. P. Kar
School of Mechanical Engineering, KIIT University Bhubaneswar, Bhubaneswar, India
Correspondence
S. P. Kar, School of Mechanical Engineering, KIIT University Bhubaneswar, Bhubaneswar, Odisha 751024, India.
Email: [email protected]
Search for more papers by this authorR. K. Sarangi
School of Mechanical Engineering, KIIT University Bhubaneswar, Bhubaneswar, India
Search for more papers by this authorSummary
This article reports detailed investigation of using different Phase Change Materials (PCM) in various designs of Thermal Energy Storage (TES) Devices: specifically, heat exchanger. The focus is on the performance analysis of different types of heat exchangers acting as TES having various PCMs which are substantially reviewed in this paper. The study highlights the difference in their geometry and performance output. Further, the importance of different performance enhancement methods with parametric study of different heat exchangers using PCM is described. From the detailed investigation, finally, it is realised that the different factors such as no. of outer tubes, no. of inner tubes, tube material selected, type of PCM, provision of an extended surface, use of different metal foams and nanoparticles, various types of composites, charging and discharging characteristics and packed and cascaded units are different heat transfer enhancement methods to improve the heat transfer. A novel kind of heat exchanger known as Webbed tube heat exchanger using PCM is discussed for an efficient TES unit. Further, a review of quantitative analysis of melting time, solidification time, charging and discharging time is discussed.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable - no new data generated
REFERENCES
- 1Colangelo G, Favale E, Miglietta P, de Risi A. Innovation in flat solar thermal collectors: a review of the last ten years experimental results. Renew Sust Energ Rev. 2016; 57: 1141-1159.
- 2Denholm P, King JC, Kutcher CF, Wilson PPH. Decarbonizing the electric sector: combining renewable and nuclear energy using thermal storage. Energy Policy. 2012; 44: 301-311.
- 3Alva G, Lin Y, Fang G. An overview of pcm systems. Energy. 2018; 144: 341-378.
- 4Sharma A, Tyagi V, et al. Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev. 2009; 13(3): 18-345.
- 5Alieva RV, Vakhshouri AR. Heat storage materials based on polyolefins and low molecular weight waxes. Plastics (Russian Language). 2012; 10: 42-46.
- 6Gunther E, Mehling H, Werner M. Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures upto 800 MPa. J Appl Phys. 2007; 40: 4636-4641.
- 7Wei G, Wang G, Chao X, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review. Renew Sust Energ Rev. 2018; 81: 1771-1786.
- 8Li WD, Ding EY. Preparation and characterization of crosslinking PEG/MDI/PE copolymer as solid–solid phase change heat storage material. Sol Energy Mater Sol Cells. 2007; 91(9): 764-768.
- 9Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 2007; 50(9–10): 1790-1804.
- 10Rathod MK. Thermal stability of phase change materials. Phase Change Materials and their Applications. London, UK: IntechOpen; 2018.
10.5772/intechopen.75923 Google Scholar
- 11Raoux S, Wutting M. Phase Change Materials—Science and Application. Boston, MA, USA: Springer; 2009.
10.1007/978-0-387-84874-7 Google Scholar
- 12Nkhonjera L, Bello-Ochende T, John G, King’ondu CK. A review of thermal energy storage designs, heat storage materials and cooking performance of solar cookers with heat storage. Renew Sust Energ Rev. 2017; 75: 157-167.
- 13Akeiber H, Nejat P, Majid MZA, et al. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew Sust Energ Rev. 2016; 60: 1470-1497.
- 14Kasaeian A, Pourfayaz F, Khodabandeh E, Yan W-M. Experimental studies on the applications of PCMs and nano-PCMs in buildings: a critical review. Energ Buildings. 2017; 154: 96-112.
- 15Souayfane F, Fardoun F, Biwole P-H. Phase change materials (PCM) for cooling applications in buildings: a review. Energ Buildings. 2016; 129: 396-431.
- 16Oró E, De Gracia A, Castell A, Farid MM, Cabeza LF. Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy. 2012; 99: 513-533.
- 17Veerakumar C, Sreekumar A. Phase change material based cold thermal energy storage: materials, techniques and applications–a review. Int J Refrig. 2016; 67: 271-289.
- 18Zalba B, Marın JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003; 23(3): 251-283.
- 19Zhang Z, Jiayu Wang X, Feng LC, Chen Y, Wang X. The solutions to electric vehicle air conditioning systems: a review. Renew Sust Energ Rev. 2018; 91: 443-463.
- 20Markandeyulu T, Devanuri JK, Kumar K. On the suitability of phase change material (PCM) for thermal management of electronic components. Indian J Sci Technol. 2016; 9(S1): 1-4.
- 21Sahoo SK, Das MK, Rath P. Application of TCE-PCM based heat sinks for cooling of electronic components: a review. Renew Sust Energ Rev. 2016; 59: 550-582.
- 22Jaya Krishna D. Operational time and melt fraction based optimization of a phase change material longitudinal fin heat sink. ASME J Thermal Sci Eng Appl. 2018; 10(6):064502. doi:10.1115/1.4040988
10.1115/1.4040988 Google Scholar
- 23Sharma A. V. Veer Tyagi, Carl R. Chen, and Dharam Buddhi. "review on thermal energy storage with phase change materials and applications.". Renew Sust Energ Rev. 2009; 13(2): 318-345.
- 24Wang Z, Qiu F, Yang W, Zhao X. Applications of solar water heating system with phase change material. Renew Sust Energ Rev. 2015; 52: 645-652.
- 25Safari V, Babak K, Hossein A. Investigation of the effects of shell geometry and tube eccentricity on thermal energy storage in shell - tube heat exchangers. J Energy Storage. 2022; 52:104978.
- 26Ren H, He M, Lin W, Yang L, Li W, Ma Z. Performance investigation and sensitivity analysis of shell-and-tube phase change material thermal energy storage. J Energy Storage. 2021; 33:102040.
- 27Shen G, Wang X, Chan A, Cao F, Yin X. Investigation on optimal shell-to-tube radius ratio of a vertical shell-and-tube latent heat energy storage system. Sol Energy. 2020; 211: 732-743.
- 28Gasia J, Steven Tay NH, Belusko M, Cabeza LF, Bruno F. Experimental investigation of the effect of dynamic melting in a cylindrical shell-and-tube heat exchanger using water as PCM. Appl Energy. 2017; 185: 136-145.
- 29Pahamli Y, Hosseini MJ, Ranjbar AA, Bahrampoury R. Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell—tube heat exchangers. Renew Energy. 2016; 97: 344-357.
- 30Gasia J, Miró L, De Gracia A, Barreneche C, Cabeza LF. Experimental evaluation of a paraffin as phase change material for thermal energy storage in laboratory equipment and in a shell-and-tube heat exchanger. Appl Sci. 2016; 6(4): 112.
- 31Fornarelli F, Camporeale SM, Fortunato B, et al. CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants. Appl Energy. 2016; 164: 711-722.
- 32Seddegh S, Wang X, Henderson AD. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Appl Therm Eng. 2016; 93: 348-358.
- 33Kibria MA, Anisur MR, Mahfuz MH, Saidur R, Metselaar IHSC. Numerical and experimental investigation of heat transfer in a shell - tube thermal energy storage system. Int Commun Heat Mass Transf. 2014; 53: 71-78.
- 34Adine HA, El Qarnia H. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Appl Math Model. 2009; 33(4): 2132-2144.
- 35Akgün M, Aydın O, Kaygusuz K. Thermal energy storage performance of paraffin in a novel tube-in-shell system. Appl Therm Eng. 2008; 28(5–6): 405-413.
- 36Akgün M, Aydın O, Kaygusuz K. Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Convers Manag. 2007; 48(2): 669-678.
- 37Fang M, Chen G. Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Eng. 2007; 27(5–6): 994-1000.
- 38Trp A, Lenic K, Frankovic B. Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit. Appl Therm Eng. 2006; 26(16): 1830-1839.
- 39Trp A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol Energy. 2005; 79(6): 648-660.
- 40Ismail KAR, Abugderah MM. Performance of a thermal storage system of the vertical tube type. Energy Convers Manag. 2000; 41(11): 1165-1190.
- 41Lacroix M. Numerical simulation of a shell-and-tube latent heat thermal energy storage unit. Sol Energy. 1993; 50(4): 357-367.
- 42Lecomte D, Mayer D. Design method for sizing a latent heat store/heat exchanger in a thermal system. Appl Energy. 1985; 21(1): 55-78.
- 43Qaiser R, Khan MM, Ahmed HF, Malik FK, Irfan M, Ahad IU. Performance enhancement of latent energy storage system using effective designs of tubes and shell. Energy Rep. 2022; 8: 3856-3872.
- 44Kumar A, Arivazhagan S, Muninathan K. Experimental and computational study of melting phase-change material for energy storage in shell - tube heat exchanger. J Energy Storage. 2022; 50:104614.
- 45Shi E, Zonouzi SA, Aminfar H, Mohammadpourfard M. Enhancement of the performance of a NEPCM filled shell-and-multi tube thermal energy storage system using magnetic field: a numerical study. Appl Therm Eng. 2020; 178:115604.
- 46Park SH, Park YG, Ha MY. A numerical study on the effect of the number and arrangement of tubes on the melting performance of phase change material in a multi-tube latent thermal energy storage system. J Energy Storage. 2020; 32:101780.
- 47Kousha N, Rahimi M, Pakrouh R, Bahrampoury R. Experimental investigation of phase change in a multitube heat exchanger. J Energy Storage. 2019; 23: 292-304.
- 48Esapour M, ArashHamzehnezhad AA, Darzi R, Jourabian M. Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system. Energy Convers Manag. 2018; 171: 398-410.
- 49Ladekar CL, Chaudhary SK, Khandare SS. Experimental investigate for optimization of heat pipe performance in latent heat thermal energy storage. Mater Today: Proc. 2017; 4(8): 8149-8157.
10.1016/j.matpr.2017.07.156 Google Scholar
- 50Lakhani S, Raul A, Saha SK. Dynamic modelling of ORC-based solar thermal power plant integrated with multitube shell - tube latent heat thermal storage system. Appl Therm Eng. 2017; 123: 458-470.
- 51Niyas H, Rao CRC, Muthukumar P. Performance investigation of a lab-scale latent heat storage prototype–experimental results. Sol Energy. 2017; 155: 971-984.
- 52Esapour M, Hosseini MJ, Ranjbar AA, Pahamli Y, Bahrampoury R. Phase change in multi-tube heat exchangers. Renew Energy. 2016; 85: 1017-1025.
- 53Bhagat K, Saha SK. Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant. Renew Energy. 2016; 95: 323-336.
- 54Aadmi M, Karkri M, El Hammouti M. Heat transfer characteristics of thermal energy storage for PCM (phase change material) melting in horizontal tube: numerical and experimental investigations. Energy. 2015; 85: 339-352.
- 55Cui H, Wang Z, Guo Y, Weiqiang X, Yuan X. Thermal performance analysis on unit tube for heat pipe receiver. Sol Energy. 2006; 80(7): 875-882.
- 56Abdelsalam MY, Sarafraz P, Cotton JS, Lightstone MF. Heat transfer characteristics of a hybrid thermal energy storage tank with phase change materials (PCMs) during indirect charging using isothermal coil heat exchanger. Sol Energy. 2017; 157: 462-476.
- 57Raut D, Lanjewar S, Kalamkar VR. Effect of geometrical and operational parameters on paraffin’s melting performance in helical coiled latent heat storage for solar application: a numerical study. Int J Therm Sci. 2022; 176:107509.
- 58Mahdi MS, Mahood HB, Mahdi JM, Khadom AA, Campbell AN. Improved PCM melting in a thermal energy storage system of double-pipe helical-coil tube. Energy Convers Manag. 2020; 203:112238.
- 59Lin W, Ling Z, Zhang Z, Fang X. Experimental and numerical investigation of sebacic acid/expanded graphite composite phase change material in a double-spiral coiled heat exchanger. J Energy Storage. 2020; 32:101849.
- 60Ardahaie SS, Hosseini MJ, Ranjbar AA, Rahimi M. Energy storage in latent heat storage of a solar thermal system using a novel flat spiral tube heat exchanger. Appl Therm Eng. 2019; 159:113900.
- 61Zheng X, Xie N, Chen C, Gao X, Huang Z, Zhang Z. Numerical investigation on paraffin/expanded graphite composite phase change material based latent thermal energy storage system with double spiral coil tube. Appl Therm Eng. 2018; 137: 164-172.
- 62Mahdi MS, Mahood HB, Campbell AN, Khadom AA. Experimental study on the melting behavior of a phase change material in a conical coil latent heat thermal energy storage unit. Appl Therm Eng. 2020; 175:114684.
- 63Punniakodi BMS, Senthil R. Effect of conical coiled heat transfer fluid tube on charging of phase-change material in a vertical shell and coil type cylindrical thermal energy storage. Energy Sources A 2020. doi:10.1080/15567036.2020.1819476
10.1080/15567036.2020.1819476 Google Scholar
- 64Sanchouli M, Payan S, Payan A, Nada SA. Investigation of the enhancing thermal performance of phase change material in a double-tube heat exchanger using grid annular fins. Case Stud Therm Eng. 2022; 34:101986.
- 65Kerme ED, Fung AS. Transient heat transfer simulation, analysis and thermal performance study of double U-tube borehole heat exchanger based on numerical heat transfer model. Appl Therm Eng. 2020; 173:115189.
- 66Chananipoor A, Azizi Z, Raei B, Tahmasebi N. Optimization of the thermal performance of nano-encapsulated phase change material slurry in double pipe heat exchanger: design of experiments using response surface methodology (RSM). J Building Eng. 2020; 101929: 101929.
- 67Qi C, Luo T, Liu M, Fan F, Yan Y. Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Convers Manag. 2019; 197:111877.
- 68Mahdi MS, Mahood HB, Hasan AF, Khadom AA, Campbell AN. Numerical study on the effect of the location of the phase change material in a concentric double pipe latent heat thermal energy storage unit. Thermal Sci Eng Progress. 2019; 11: 40-49.
10.1016/j.tsep.2019.03.007 Google Scholar
- 69Ramkumar P, Sivasubramanian M, Rajesh Kanna P, Raveendiran P. Heat transfer behaviour on influence of an adiabatic section on concentric tube shell assisted heat pipe heat exchanger. Int J Ambient Energy. 2019; 42: 1-10.
- 70Pahamli Y, Hosseini MJ, Ranjbar AA, Bahrampoury R. Inner pipe downward movement effect on melting of PCM in a double pipe heat exchanger. Appl Math Comput. 2018; 316: 30-42.
- 71Solomon GR, Karthikeyan S, Velraj R. Sub cooling of PCM due to various effects during solidification in a vertical concentric tube thermal storage unit. Appl Therm Eng. 2013; 52(2): 505-511.
- 72Ettouney H, El-Dessouky H, Al-Kandari E. Heat transfer characteristics during melting and solidification of phase change energy storage process. Ind Eng Chem Res. 2004; 43(17): 5350-5357.
- 73Radhakrishnan KB, Balakrishnan AR. Heat transfer analysis of thermal energy storage using phase change materials. Heat Recovery Syst CHP. 1992; 12(5): 427-435.
- 74Fath HES. Heat exchanger performance for latent heat thermal energy storage system. Energy Convers Manag. 1991; 31(2): 149-155.
- 75Yanadori M, Masuda T. Heat transfer study on a heat storage container with a phase change material.(part 2. Heat transfer in the melting process in a cylindrical heat storage container). Sol Energy. 1989; 42(1): 27-34.
- 76Yang K, Zhu N, Li Y, Na D. Effect of parameters on the melting performance of triplex tube heat exchanger incorporating phase change material. Renew Energy. 2021; 174: 359-371.
- 77Cao X, Zhang N, Yuan Y, Luo X. Thermal performance of triplex-tube latent heat storage exchanger: simultaneous heat storage and hot water supply via condensation heat recovery. Renew Energy. 2020; 157: 616-625.
- 78Shahsavar A, Shaham A, Talebizadehsardari P. Wavy channels triple-tube LHS unit with sinusoidal variable wavelength in charging/discharging mechanism. Int Commun Heat Mass Transf. 2019; 107: 93-105.
- 79Elbahjaoui R, El Qarnia H, Naimi A. Thermal performance analysis of combined solar collector with triple concentric-tube latent heat storage systems. Energ Buildings. 2018; 168: 438-456.
- 80Mahdi JM, Nsofor EC. Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination. Appl Energy. 2017; 191: 22-34.
- 81Birol B, Ünal A. Numerical evaluation of a triple concentric-tube latent heat thermal energy storage. Sol Energy. 2013; 92: 196-205.
- 82Al-Mudhafar AHN, Nowakowski AF, Nicolleau FCGA. Performance enhancement of PCM latent heat thermal energy storage system utilizing a modified webbed tube heat exchanger. Energy Rep. 2020; 6: 76-85.
- 83Wang T-H, Yang T-F, Kao C-H, Yan W-M, Ghalambaz M. Paraffin core-polymer shell micro-encapsulated phase change materials and expanded graphite particles as an enhanced energy storage medium in heat exchangers. Adv Powder Technol. 2020; 31(6): 2421-2429.
- 84Arshad A, Jabbal M, Sardari PT, Bashir MA, Faraji H, Yan Y. Transient simulation of finned heat sinks embedded with PCM for electronics cooling. Therm Sci Eng Prog. 2020; 18: 100520.
10.1016/j.tsep.2020.100520 Google Scholar
- 85Raud R, Cholette ME, SoheilaRiahi FB, Saman W, Will G, Steinberg TA. Design optimization method for tube and fin latent heat thermal energy storage systems. Energy. 2017; 134: 585-594.
- 86Kurnia JC, Sasmito AP, Jangam SV, Mujumdar AS. Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES). Appl Therm Eng. 2013; 50(1): 896-907.
- 87Anish R, Joybari MM, Seddegh S, Mariappan V, Haghighat F, Yuan Y. Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: numerical investigation. Renew Energy. 2021; 163: 423-436.
- 88Khan LA, Khan MM. Role of orientation of fins in performance enhancement of a latent thermal energy storage unit. Appl Therm Eng. 2020; 175:115408.
- 89Zhang C, Li J, Chen Y. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins. Appl Energy. 2020; 259:114102.
- 90Xu H, Wang N, Zhang C, Zhiguo Q, Cao M. Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell - tube thermal energy storage unit. Appl Therm Eng. 2020; 176:115409.
- 91Raul A, Saha SK, Jain M. Transient performance analysis of concentrating solar thermal power plant with finned latent heat thermal energy storage. Renew Energy. 2020; 145: 1957-1971.
- 92Abreha BG, Mahanta P, Trivedi G. Thermal performance evaluation of multi-tube cylindrical LHS system. Appl Therm Eng. 2020; 179:115743.
- 93Khan Z, Khan ZA. Role of extended fins and graphene nano-platelets in coupled thermal enhancement of latent heat storage system. Energy Convers Manag. 2020; 224:113349.
- 94Aly KA, El-Lathy AR, Fouad MA. Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins. J Energy Storage. 2019; 24:100785.
- 95Anish R, Mariappan V, MastaniJoybari M. Experimental investigation on the melting and solidification behavior of erythritol in a horizontal shell and multi-finned tube latent heat storage unit. Appl Therm Eng. 2019; 161:114194.
- 96Patel JR, Rathod MK. Thermal performance enhancement of melting and solidification process of phase-change material in triplex tube heat exchanger using longitudinal fins. Heat Transf Asian Res. 2019; 48(2): 483-501.
- 97Raul AK, Bhavsar P, Saha SK. Experimental study on discharging performance of vertical multitube shell - tube latent heat thermal energy storage. J Energy Storage. 2018; 20: 279-288.
- 98Kumar A, Saha SK. Latent heat thermal storage with variable porosity metal matrix: a numerical study. Renew Energy. 2018; 125: 962-973.
- 99Mahdi JM, Lohrasbi S, Ganji DD, Nsofor EC. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger. Int J Heat Mass Transf. 2018; 124: 663-676.
- 100Bhagat K, Prabhakar M, Saha SK. Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage. J Energy Storage. 2018; 19: 135-144.
- 101Abdulateef AM, Mat S, KamaruzzamanSopian JA, Gitan AA. Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins. Sol Energy. 2017; 155: 142-153.
- 102Johar DK, Sharma D, Soni SL, Gupta PK, Goyal R. Experimental investigation on latent heat thermal energy storage system for stationary CI engine exhaust. Appl Therm Eng. 2016; 104: 64-73.
- 103Wang P, Yao H, Lan Z, Peng Z, Huang Y, Ding Y. Numerical investigation of PCM melting process in sleeve tube with internal fins. Energy Convers Manag. 2016; 110: 428-435.
- 104Al-Abidi A, Mat S, Sopian K, Sulaiman Y, Mohammad A. Heat transfer enhancement for PCM thermal energy storage in triplex tube heat exchanger. Heat Transf Eng. 2016; 37(7–8): 705-712.
- 105Li Z, Zhi-Gen W. Analysis of HTFs, PCMs and fins effects on the thermal performance of shell–tube thermal energy storage units. Sol Energy. 2015; 122: 382-395.
- 106Tao YB, He YL. Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube. Appl Energy. 2015; 143: 38-46.
- 107Hosseini MJ, Ranjbar AA, Rahimi M, Bahrampoury R. Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems. Energ Buildings. 2015; 99: 263-272.
- 108Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Appl Therm Eng. 2013; 53(1): 147-156.
- 109Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins. Int J Heat Mass Transf. 2013; 61: 684-695.
- 110Pandiyarajan V, Chinna Pandian M, Malan E, Velraj R, Seeniraj RV. Experimental investigation on heat recovery from diesel engine exhaust using finned shell - tube heat exchanger and thermal storage system. Appl Energy. 2011; 88(1): 77-87.
- 111Yang X, Jiabang Y, Xiao T, Zehuan H, He Y-L. Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam. Appl Energy. 2020; 261:114385.
- 112Gholaminia V, Rahimi M, Ghaebi H. Heat storage process analysis in a heat exchanger containing phase change materials. J Energy Storage. 2020; 32:101875.
- 113Parsazadeh M, Duan X. Numerical study on the effects of fins and nanoparticles in a shell - tube phase change thermal energy storage unit. Appl Energy. 2018; 216: 142-156.
- 114Jmal I, Baccar M. Numerical study of PCM solidification in a finned tube thermal storage including natural convection. Appl Therm Eng. 2015; 84: 320-330.
- 115Medrano M, Yilmaz MO, Nogués M, Martorell I, Roca J, Cabeza LF. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Appl Energy. 2009; 86(10): 2047-2055.
- 116Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol Energy. 2009; 83(9): 1509-1520.
- 117Ali HM, Ashraf MJ, AmbraGiovannelli MI, et al. Thermal management of electronics: an experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs. Int J Heat Mass Transf. 2018; 123: 272-284.
- 118Jmal I, Baccar M. Numerical investigation of PCM solidification in a finned rectangular heat exchanger including natural convection. Int J Heat Mass Transf. 2018; 127: 714-727.
- 119Gasia J, Diriken J, Bourke M, Van Bael J, Cabeza LF. Comparative study of the thermal performance of four different shell-and-tube heat exchangers used as latent heat thermal energy storage systems. Renew Energy. 2017; 114: 934-944.
- 120Yuan Y, Cao X, Xiang B, Yanxia D. Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage. Sol Energy. 2016; 136: 365-378.
- 121Tiari S, Qiu S, Mahdavi M. Discharging process of a finned heat pipe–assisted thermal energy storage system with high temperature phase change material. Energy Convers Manag. 2016; 118: 426-437.
- 122Kabbara M, Groulx D, Joseph A. Experimental investigations of a latent heat energy storage unit using finned tubes. Appl Therm Eng. 2016; 101: 601-611.
- 123Tiari S, Qiu S, Mahdavi M. Numerical study of finned heat pipe-assisted thermal energy storage system with high temperature phase change material. Energy Convers Manag. 2015; 89: 833-842.
- 124Nie C, Deng S, Liu J. Effects of fins arrangement and parameters on the consecutive melting and solidification of PCM in a latent heat storage unit. J Energy Storage. 2020; 29:101319.
- 125Deng S, ChangdaNie HJ, Ye W-B. Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage. Int J Heat Mass Transf. 2019; 130: 532-544.
- 126Zhang S, Liang P, Xu L, Liu R, Li Y. Melting performance analysis of phase change materials in different finned thermal energy storage. Appl Therm Eng. 2020; 176: 1.15425.
- 127Yang X, Guo J, Yang B, Cheng H, Wei P, He Y-L. Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit. Appl Energy. 2020; 279:115772.
- 128Karami R, Kamkari B. Experimental investigation of the effect of perforated fins on thermal performance enhancement of vertical shell - tube latent heat energy storage systems. Energy Convers Manag. 2020; 210:112679.
- 129Amagour MEH, Bennajah M, Rachek A. Numerical investigation and experimental validation of the thermal performance enhancement of a compact finned-tube heat exchanger for efficient latent heat thermal energy storage. J Clean Prod. 2021; 280: 124238. doi:10.1016/j.jclepro.2020.124238
10.1016/j.jclepro.2020.124238 Google Scholar
- 130Amagour MEH, Rachek A, Bennajah M, Touhami ME. Experimental investigation and comparative performance analysis of a compact finned-tube heat exchanger uniformly filled with a phase change material for thermal energy storage. Energy Convers Manag. 2018; 165: 137-151.
- 131Mehta DS, Vaghela B, Rathod MK, Banerjee J. Thermal performance augmentation in latent heat storage unit using spiral fin: an experimental analysis. J Energy Storage. 2020; 31:101776.
- 132Yao S, Huang X. Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system. Energy. 2021; 227:120527.
- 133Abdulateef AM, Abdulateef J, Al-Abidi AA, Sopian K, Mat S, Mahdi MS. A combination of fins-nanoparticle for enhancing the discharging of phase-change material used for liquid desiccant air conditioning unite. J Energy Storage. 2019; 24:100784.
- 134Demirkıran İG, Rocha LAO, Cetkin E. Emergence of asymmetric straight and branched fins in horizontally oriented latent heat thermal energy storage units. Int J Heat Mass Transf. 2022; 189:122726.
- 135Sciacovelli A, Gagliardi F, Verda V. Maximization of performance of a PCM latent heat storage system with innovative fins. Appl Energy. 2015; 137: 707-715.
- 136Dogkas G, Konstantaras J, Koukou MK, et al. Development and experimental testing of a compact thermal energy storage tank using paraffin targeting domestic hot water production needs. Therm Sci Eng Prog. 2020; 19: 100573.
10.1016/j.tsep.2020.100573 Google Scholar
- 137Keshteli N, Abolfazl MI, Langella G, Bianco N. Enhancing PCMs thermal conductivity: a comparison among porous metal foams, nanoparticles and finned surfaces in triplex tube heat exchangers. Appl Therm Eng. 2022; 212:118623.
- 138Mozafari M, Lee A, Cheng S. Simultaneous energy storage and recovery in triplex-tube heat exchanger using multiple phase change materials with nanoparticles. J Energy Storage. 2022; 49:104164.
- 139Benbrika M, Teggar M, Arıcı M, Ismail KAR, Bouabdallah S, Mezaache E-H. Effect of graphene nanoparticles on charging and discharging processes of latent thermal energy storage using horizontal cylinders. Sustain Energy Technol Assess. 2021; 45:101242.
- 140Ghalambaz M, Mehryan SAM, Ayoubloo KA, et al. Thermal behavior and energy storage of a suspension of nano-encapsulated phase change materials in an enclosure. Adv Powder Technol. 2021; 32: 2004-2019.
- 141Ho CJ, Hsu S-T, Yang T-F, Chen B-L. Saman Rashidi, and Wei-Mon Yan. "cooling performance of mini-channel heat sink with water-based nano-PCM emulsion-an experimental study.". Int J Therm Sci. 2021; 164:106903.
- 142Hosseinzadeh K, Erfani Moghaddam MA, Asadi A, et al. Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2-TiO2) on solidification process in triplex latent heat thermal energy storage system. Alex Eng J. 2021; 60(1): 1967-1979.
- 143Hajizadeh MR, Alsabery AI, Sheremet MA, Kumar R, Li Z, Bach Q-V. Nanoparticle impact on discharging of PCM through a thermal storage involving numerical modeling for heat transfer and irreversibility. Powder Technol. 2020; 376: 424-437.
- 144Gorzin M, Hosseini MJ, Rahimi M, Bahrampoury R. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger. J Energy Storage. 2019; 22: 88-97.
- 145Jiang L, Wang RZ, Roskilly AP. Development and thermal characteristics of a novel composite oleic acid for cold storage. Int J Refrig. 2019; 100: 55-62.
- 146Moghaddam MAE, Hassani Soukht Abandani MR, Hosseinzadeh K, Shafii MB, Ganji DD. Metal foam and fin implementation into a triple concentric tube heat exchanger over melting evolution. Theor Appl Mech Lett. 2022; 12:100332.
- 147Wang C, Wang T, Zhanjiang H, Cai Z. Facile synthesis and thermal performance of cety palmitate/nickel foam composite phase change materials for thermal energy storage. J Energy Storage. 2020; 28:101179.
- 148Dinesh BVS, Bhattacharya A. Effect of foam geometry on heat absorption characteristics of PCM-metal foam composite thermal energy storage systems. Int J Heat Mass Transf. 2019; 134: 866-883.
- 149Sardari PT, Giddings D, Grant D, Gillott M, Walker GS. Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit. Renew Energy. 2020; 148: 987-1001.
- 150Mahdi JM, Nsofor EC. Multiple-segment metal foam application in the shell-and-tube PCM thermal energy storage system. J Energy Storage. 2018; 20: 529-541.
- 151Zhao CY, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Sol Energy. 2010; 84(8): 1402-1412.
- 152Yazici MY, Saglam M, Aydin ORHAN, Avci MEHMET. Thermal energy storage performance of PCM/graphite matrix composite in a tube-in-shell geometry. Therm Sci Eng Prog. 2021; 23:100915.
- 153Zhang X, Zhu C, Fang G. Preparation and thermal properties of n-eicosane/nano-SiO2/expanded graphite composite phase-change material for thermal energy storage. Mater Chem Phys. 2020; 240:122178.
- 154Li C, Wang M, Xie B, Ma H, Chen J. Enhanced properties of diatomite-based composite phase change materials for thermal energy storage. Renew Energy. 2020; 147: 265-274.
- 155Zuo X, Li J, Zhao X, Yang H, Chen D. Emerging paraffin/carbon-coated nanoscroll composite phase change material for thermal energy storage. Renew Energy. 2020; 152: 579-589.
- 156Chen M, He Y, Ye Q, Zhang Z, Yanwei H. Solar thermal conversion and thermal energy storage of CuO/paraffin phase change composites. Int J Heat Mass Transf. 2019; 130: 1133-1140.
- 157Cheng F, Zhang X, Wen R, et al. Thermal conductivity enhancement of form-stable tetradecanol/expanded perlite composite phase change materials by adding cu powder and carbon fiber for thermal energy storage. Appl Therm Eng. 2019; 156: 653-659.
- 158Sodhi GS, Muthukumar P. Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution. Renew Energy. 2021; 171: 299-314.
- 159Ebadi S, Tasnim SH, Aliabadi AA, Mahmud S. An experimental investigation of the charging process of thermal energy storage system filled with PCM and metal wire mesh. Appl Therm Eng. 2020; 174:115266.
- 160Alhusseny A, Al-Zurfi N, Nasser A, Al-Fatlawi A, Aljanabi M. Impact of using a PCM-metal foam composite on charging/discharging process of bundled-tube LHTES units. Int J Heat Mass Transf. 2020; 150:119320.
- 161Mayilvelnathan V, Valan Arasu A. Experimental investigation on thermal behavior of graphene dispersed erythritol PCM in a shell and helical tube latent energy storage system. Int J Therm Sci. 2020; 155:106446.
- 162Anish R, Mariappan V, Hitha PS, Arun BS. Accelerated charging of PCM in a horizontal shell and multi-finned tube energy storage system. Mater Today: Proc. 2021;46(19):9702-9706.
10.1016/j.matpr.2020.08.461 Google Scholar
- 163Yang X, Bai Q, Zhang Q, Wenju H, Jin L, Yan J. Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage. Appl Energy. 2018; 225: 585-599.
- 164Abdulateef AM, Abdulateef J, Mat S, Sopian K, Elhub B, Mussa MA. Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins. Int Commun Heat Mass Transf. 2018; 90: 73-84.
- 165Al-Abidi AA, Mat S, Sopian K, Sulaiman MY, Mohammad AT. Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energ Buildings. 2014; 68: 33-41.
- 166Ettouney H, El-Dessouky H, Al-Ali A. Heat transfer during phase change of paraffin wax stored in spherical shells. J Sol Energy Eng. 2005; 127(3): 357-365.
- 167Franklin S, Benjamin IK, Ramesh K. Finite element modeling of energy storage materials alumina using heat recovery in packed pebble bed heat exchanger. Mater Today: Proc. 2021; 45: 1872-1877.
10.1016/j.matpr.2020.09.074 Google Scholar
- 168Grabo M, Acar E, Kenig EY. Modeling and improvement of a packed bed latent heat storage filled with non-spherical encapsulated PCM-elements. Renew Energy. 2021; 173: 1087-1097.
- 169Yang L, Zhang X, Guoying X. Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Energ Buildings. 2014; 68: 639-646.
- 170Nallusamy N, Sampath S, Velraj R. Study on performance of a packed bed latent heat thermal energy storage unit integrated with solar water heating system. J Zhejiang Univ Sci A. 2006; 7(8): 1422-1430.
10.1631/jzus.2006.A1422 Google Scholar
- 171Nekoonam S, Ghasempour R. Optimization of a solar cascaded phase change slab-plate heat exchanger thermal storage system. J Energy Storage. 2021; 34:102005.
- 172Li M-J, Li M-J, Tong Z-X, Li D. Optimization of the packed-bed thermal energy storage with cascaded PCM capsules under the constraint of outlet threshold temperature. Appl Therm Eng. 2021; 186:116473.
- 173Mahdi JM, Mohammed HI, Hashim ET, Talebizadehsardari P, Nsofor EC. Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system. Appl Energy. 2020; 257:113993.
- 174Riahi S, Liu M, Jacob R, Belusko M, Bruno F. Assessment of exergy delivery of thermal energy storage systems for CSP plants: Cascade PCMs, graphite-PCMs and two-tank sensible heat storage systems. Sustain Energy Technol Assess. 2020; 42:100823.