Highly dispersed single-wall carbon nanotube thin film on WO3 film for ultrafast multi-functional electrochemical devices
Myeong-Hun Jo
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, South Korea
Search for more papers by this authorCorresponding Author
Hyo-Jin Ahn
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, South Korea
Correspondence
Hyo-Jin Ahn, Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea.
Email: [email protected]
Search for more papers by this authorMyeong-Hun Jo
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, South Korea
Search for more papers by this authorCorresponding Author
Hyo-Jin Ahn
Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, South Korea
Correspondence
Hyo-Jin Ahn, Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul, 01811, South Korea.
Email: [email protected]
Search for more papers by this authorFunding information: National Research Foundation of Korea, Grant/Award Number: 2021M3H4A3A02086102
Summary
A highly dispersed single-wall carbon nanotube (HD-SWCNT) thin film is introduced on a WO3 film (HD-SWCNT/WO3) by ultrasonic spray coating method to accelerate electron and Li-ion transport for realizing ultrafast multi-functional electrochromic (EC) energy-storage electrodes. Uniform grafting of polyvinylpyrrolidone onto the SWCNTs induces their amicable debundling without any surface defects. The highly debundled and continuous morphology of the HD-SWCNT thin film enables accelerated electron transport along the sp2 carbons, which leads to excellent electrical properties (electrical conductivity of ~1361 S/cm and sheet resistance of ~7.3 Ω/□). Functional groups such as amides and carbonyls on the HD-SWCNTs enhance Li-ion wettability, which accelerates Li-ion diffusion kinetics. In addition, the uniform structure of the HD-SWCNT thin film with its porosity effectively shortens the Li-ion diffusion pathways and increases the contact area between the functional groups and the electrolyte, improving the electrochemical activity of the electrode. Such behaviors to promote electron and Li-ion transport at the interface between the electrolyte and the WO3 film enhance the EC energy-storage performances compared to those of aggregated SWCNT film on WO3 and a bare WO3 electrode. The corresponding performances of HD-SWCNT/WO3 include the transmittance modulation (58.7% at 633 nm), switching speeds (3.1 s for coloration and 4.5 s for bleaching), coloration efficiency (51.9 cm2/C), and specific capacitance (87.9 F/g at 2 A/g). In particular, owing to the synergistic effect of the accelerated electrical conductivity and the Li-ion diffusivity of the HD-SWCNT thin film for ultrafast electrochemical kinetics, HD-SWCNT/WO3 exhibits a remarkable high-rate capability (82.9%, specific capacitance retention at 20 A/g compared to 2 A/g), which demonstrates ultrafast charge/discharge characteristics. In this regard, the introduction of an HD-SWCNT thin film as a functional layer to improve the ultrafast charge transport at the interface between a WO3 and an electrolyte could be a promising strategy for ultrafast multi-functional electrochemical devices.
Open Research
DATA AVAILABILITY STATEMENT
Data available in article supplementary material.
Supporting Information
Filename | Description |
---|---|
er8302-sup-0001-Supinfo.docxWord 2007 document , 916 KB | Data S1 Supporting information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Ibrahim D, Marc AR. A worldwide perspective on energy, environment and sustainable development. Int J Energy Res. 1998; 22: 1305-1321. doi:10.1002/(SICI)1099-114X(199812)22:15<1305::AID-ER417>3.0.CO;2-H
- 2Joeri R, Oliver G, Annette C, Andy R. Three ways to improve net-zero emissions targets. Nature. 2021; 591: 365-368. doi:10.1038/d41586-021-00662-3
- 3Mombeshora ET, Vincent ON. A review on the use of carbon nanostructured materials in electrochemical capacitors. Int J Energy Res. 2015; 39: 1955-1980. doi:10.1002/er.3423
- 4Fang W, Kwon OJ, Wang C-Y. Electrochemical–thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell. Int J Energy Res. 2010; 34: 107-115. doi:10.1002/er.1652
- 5Jo M-H, Koo B-R, Kim K-H, Ahn H-J. Tailored interface stabilization of FTO transparent conducting electrodes boosting electron and Li ion transport for electrochromic energy-storage devices. Chem Eng J. 2022; 431:134036. doi:10.1016/j.cej.2021.134036
- 6Jo M-H, Koo B-R, Ahn H-J. Defective impacts on amorphous WO3·H2O films using accelerated hydrolysis effects for flexible electrochromic energy-storage devices. Appl Surf Sci. 2021; 556:149664. doi:10.1016/j.apsusc.2021.149664
- 7Yang P, Sun P, Mai W. Electrochromic energy storage devices. Mater Today. 2016; 19: 395-402. doi:10.1016/j.mattod.2015.11.007
10.1016/j.mattod.2015.11.007 Google Scholar
- 8Kim Y, Han M, Kim J, Kim E. Electrochromic capacitive windows based on all conjugated polymers for a dual function smart window. Energy Environ Sci. 2018; 11: 2124-2133. doi:10.1039/C8EE00080H
- 9Xie S, Chen Y, Bi Z, et al. Energy storage smart window with transparent-to-dark electrochromic behavior and improved pseudocapacitive performance. Chem Eng J. 2019; 370: 1459-1466. doi:10.1016/j.cej.2019.03.242
- 10Koo B-R, Jo M-H, Kim K-H, Ahn H-J. Multifunctional electrochromic energy storage devices by chemical cross-linking: impact of a WO3·H2O nanoparticle-embedded chitosan thin film on amorphous WO3 films. NPG Asia Mater. 2020; 12: 10. doi:10.1038/s41427-019-0193-z
- 11Guo Q, Zhao X, Li Z, Wang D, Nie G. A novel solid-state electrochromic supercapacitor with high energy storage capacity and cycle stability based on poly(5-formylindole)/WO3 honeycombed porous nanocomposites. Chem Eng J. 2020; 384:123370. doi:10.1016/j.cej.2019.123370
- 12Nayak AK, Das AK, Pradhan D. High performance solid-state asymmetric supercapacitor using green synthesized graphene−WO3 nanowires nanocomposite. ACS Sustain Chem Eng. 2017; 5: 10128-10138. doi:10.1021/acssuschemeng.7b02135
- 13Das AK, Paria S, Maitra A, et al. Highly rate capable nanoflower-like NiSe and WO3@PPy composite electrode materials toward high energy density flexible all-solid-state asymmetric supercapacitor. ACS Appl Electron Mater. 2019; 1: 977-990. doi:10.1021/acsaelm.9b00164
- 14Nicola FD, Castrucci P, Scarselli M, Nanni F, Cacciotti I, Crescenzi MD. Multi-fractal hierarchy of single-walled carbon nanotube hydrophobic coatings. Sci Rep. 2015; 5: 8583. doi:10.1038/srep08583
- 15Joseph BA, Jagannatham M, Rohit RD, Prathap H. Synthesis of thin bundled single walled carbon nanotubes and nanohorn hybrids by arc discharge technique in open air atmosphere. Diam Relat Mat. 2015; 55: 12-15. doi:10.1016/j.diamond.2015.02.004
- 16Singh R, Chauhan S, Sharma K. Surface tension, viscosity, and refractive index of sodium dodecyl sulfate (SDS) in aqueous solution containing poly(ethylene glycol) (PEG), poly(vinyl pyrrolidone) (PVP), and their blends. J Chem Eng Data. 2017; 62: 1955-1964. doi:10.1021/acs.jced.6b00978
- 17Lavish K, Alok B, Tapas L. Understanding the effect of bimodal microstructure on the strength–ductility synergy of Al–CNT nanocomposites. J Mater Sci. 2021; 56: 1730-1748. doi:10.1007/s10853-020-05302-1
- 18Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Avalos-Borja M, Castillon-Barraza FF, Posada-Amarillas A. Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol. Mater Res Bull. 2008; 43: 90-96. doi:10.1016/j.materresbull.2007.02.013
- 19Martinez MT, Callejas MA, Benito AM, et al. Sensitivity of single wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalisation. Carbon. 2003; 41: 2247-2256. doi:10.1016/S0008-6223(03)00250-1
- 20Njuguna J, Vanli OA, Liang R. A review of spectral methods for dispersion characterization of carbon nanotubes in aqueous suspensions. J Spectrosc 2015; 2015:463156. doi:10.1155/2015/463156, 1, 11
- 21Choi M, Koppala SK, Yoon D, Hwang J, Kim SM, Kim J. A route to synthesis molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites using supercritical methanol and their enhanced electrochemical performance for Li-ion batteries. J Power Sources. 2016; 309: 202-211. doi:10.1016/j.jpowsour.2016.01.081
- 22Varga M, Izak T, Vretenar V, et al. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon. 2017; 11: 54-61. doi:10.1016/j.carbon.2016.09.064
- 23Chang K-C, Ji W-F, Lai M-C, et al. Synergistic effects of hydrophobicity and gas barrier properties on the anticorrosion property of PMMA nanocomposite coatings embedded with graphene nanosheets. Polym Chem. 2014; 5: 1049-1056. doi:10.1039/C3PY01178J
- 24Sun X, Lv X, Sui M, Weng X, Li X, Wang J. Decorating MOF-derived nanoporous Co/C in chain-like polypyrrole (PPy) aerogel: a lightweight material with excellent electromagnetic absorption. Materials. 2018; 11: 781. doi:10.3390/ma11050781
- 25Safo IA, Dosche C, Ozaslan M. Effects of capping agents on the oxygen reduction reaction activity and shape stability of Pt nanocubes. ChemPhysChem. 2019; 20: 3010-3023. doi:10.1002/cphc.201900653
- 26Liu T, Yang F, Li Y, et al. Plasma synthesis of carbon nanotube-gold nanohybrids: efficient catalysts for green oxidation of silanes in water. J Mater Chem A. 2014; 2: 245-250. doi:10.1039/C3TA13693K
- 27Kim KJ, Kim J-H, Park M-S, Kwon HK, Kim H, Kim Y-J. Enhancement of electrochemical and thermal properties of polyethylene separators coated with polyvinylidene fluoride–hexafluoropropylene co-polymer for Li-ion batteries. J Power Sources. 2012; 198: 298-302. doi:10.1016/j.jpowsour.2011.09.086
- 28Tang W, Chen Z, Huang H, et al. PVP-bridged γ-LiAlO2 nanolayer on Li1.2Ni0.182Co0.08Mn0.538O2 cathode materials for improving the rate capability and cycling stability. Chem Eng J. 2021; 229: 116126. doi:10.1016/j.ces.2020.116126
- 29Sam S, Mathias L, Jeroen D, Jan D, Naveen KR, Wim D. Surface roughness reduction of additive manufactured products by applying a functional coating using ultrasonic spray coating. Coatings. 2017; 7: 208. doi:10.3390/coatings7120208
- 30Liu S, Zhang X, Zhang L, Xie W. Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices. Sci Rep. 2016; 6: 37042. doi:10.1038/srep37042
- 31Schmidt RH, Kinloch IA, Burgess AN, Windle AH. The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. Langmuir. 2007; 23: 5707-5712. doi:10.1021/la062794m
- 32Koo B-R, Ahn H-J. Fast-switching electrochromic properties of mesoporous WO3 films with oxygen vacancy defects. Nanoscale. 2017; 9: 17788-17793. doi:10.1039/C7NR06796H
- 33Samal R, Chakraborty B, Saxena M, Late DJ, Rout CS. Facile production of mesoporous WO3-rGO hybrids for high- performance supercapacitor electrodes: an experimental and computational study. ACS Sustain Chem Eng. 2019; 7: 2350-2359. doi:10.1021/acssuschemeng.8b05132
- 34Kaur J, Anand K, Anand K, Singh RC. WO3 nanolamellae/reduced graphene oxide nanocomposites for highly sensitive and selective acetone sensing. J Mater Sci. 2018; 53: 12894-12907. doi:10.1007/s10853-018-2558-z
- 35Tingaev MI, Belenkov EA. Hybrid sp2+sp3 carbon phases created from carbon nanotubes. J Phys: Conf Ser. 2017; 917:032013. doi:10.1088/1742-6596/917/3/032013
10.1088/1742-6596/917/3/032013 Google Scholar
- 36Hao J, Long J, Li B, et al. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv Funct Mater. 2019; 29: 1903605. doi:10.1002/adfm.201903605
- 37Tsierkezos NG. Cyclic Voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J Solution Chem. 2007; 36: 289-302. doi:10.1007/s10953-006-9119-9
- 38Zhang L, Chen Z. Polyoxometalates: tailoring metal oxides in molecular dimension toward energy applications. Int J Energy Res. 2020; 44: 3316-3346. doi:10.1002/er.5124
- 39Siddique AH, Butt R, Bokhari SW, Raj DV, Zhou X, Liu Z. All graphene electrode for high-performance asymmetric supercapacitor. Int J Energy Res. 2020; 44: 1244-1255. doi:10.1002/er.4893
- 40Lee HR, Kim Y-S, Lee Y-K, Lee S, Joh H-I. High-capacity anode derived from graphene oxide with lithium-active functional groups. Int J Energy Res. 2022; 46: 2021-2028. doi:10.1002/er.7238
- 41Li X, Zhang L, Liu Y, Pan A, Liao Q, Yang X. A fast classification method of retired electric vehicle battery modules and their energy storage application in photovoltaic generation. Int J Energy Res. 2020; 44: 2337-2344. doi:10.1002/er.5083
- 42Xu T, Walter EC, Agrawal A, et al. High-contrast and fast electrochromic switching enabled by plasmonics. Nat Commun. 2016; 7: 10479. doi:10.1038/ncomms10479
- 43Hassab S, Shen DE, Osterholm AM, et al. A new standard method to calculate electrochromic switching time. Sol Energy Mater Sol Cells. 2018; 185: 54-60. doi:10.1016/j.solmat.2018.04.031
- 44Tuan VB, Kim AH, Quyet VL, Kim H, Ahn SH, Kim SY. Highly stable electrochromic cells based on amorphous tungsten oxides prepared using a solution-annealing process. Int J Energy Res. 2021; 45: 8061-8072. doi:10.1002/er.6354
- 45Shinde PA, Lokhande AC, Patil AM, Lokhande CD. Facile synthesis of self-assembled WO3 nanorods for high-performance electrochemical capacitor. J Alloy Compd. 2019; 770: 1130-1137. doi:10.1016/j.jallcom.2018.08.194
- 46Lee S, Lee Y-W, Kwak D-H, et al. Improved pseudocapacitive performance of well-defined WO3−x nanoplates. Ceram Int. 2015; 41: 4989-4995. doi:10.1016/j.ceramint.2014.12.064
- 47Kumar RD, Andou Y, Karuppuchamy S. Microwave-assisted synthesis of Zn-WO3 and ZnWO4 for pseudocapacitor applications. J Phys Chem Solid. 2016; 92: 94-99. doi:10.1016/j.jpcs.2016.01.022
- 48Hai Z, Karbalaei M, Wei Z, et al. Nano-thickness dependence of supercapacitor performance of the ALD-fabricated two-dimensional WO3. Electrochim Acta. 2017; 246: 625-633. doi:10.1016/j.electacta.2017.06.095
- 49Yao S, Qu F, Wang G, Wu X. Facile hydrothermal synthesis of WO3 nanorods for photocatalysts and supercapacitors. J Alloy Compd. 2017; 724: 695-702. doi:10.1016/j.jallcom.2017.07.123
- 50Yao S, Zheng X, Zhang X, Xiao H, Qu F, Wu X. Facile synthesis of flexible WO3 nanofibers as supercapacitor electrodes. Mater Lett. 2017; 186: 94-97. doi:10.1016/j.matlet.2016.09.085
- 51Gupta SP, Patil VB, Tarwal NL, et al. Enhanced energy density and stability of self-assembled cauliflower of Pd doped monoclinic WO3 nanostructure supercapacitor. Mater Chem Phys. 2019; 225: 192-199. doi:10.1016/j.matchemphys.2018.12.077
- 52Ma L, Zhou X, Xu L, et al. Hydrothermal preparation and supercapacitive performance of flower-like WO3·H2O/reduced graphene oxide composite. Colloid Surf A-Physicochem Eng Asp. 2015; 481: 609-615. doi:10.1016/j.colsurfa.2015.06.040
- 53Upadhyay KK, Altomare M, Eugenio S, Schmuki P, Silva TM, Montemor MF. On the supercapacitive behaviour of anodic porous WO3-based negative electrodes. Electrochim Acta. 2017; 232: 192-201. doi:10.1016/j.electacta.2017.02.131
- 54Wang F, Zhan X, Cheng Z, et al. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small. 2015; 11: 749-755. doi:10.1002/smll.201402340