Performance investigation and energy production of a novel horizontal axis wind turbine with winglet
Shalini Verma
Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad, Uttar Pradesh, India
Search for more papers by this authorCorresponding Author
Akshoy Ranjan Paul
Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad, Uttar Pradesh, India
Correspondence
Akshoy Ranjan Paul, Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad 211004, Uttar Pradesh, India.
Email: [email protected]
Search for more papers by this authorAnuj Jain
Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad, Uttar Pradesh, India
Search for more papers by this authorShalini Verma
Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad, Uttar Pradesh, India
Search for more papers by this authorCorresponding Author
Akshoy Ranjan Paul
Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad, Uttar Pradesh, India
Correspondence
Akshoy Ranjan Paul, Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad 211004, Uttar Pradesh, India.
Email: [email protected]
Search for more papers by this authorAnuj Jain
Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad, Allahabad, Uttar Pradesh, India
Search for more papers by this authorSummary
This study mainly focuses on improving the aerodynamic performance, analysing the turbulence effect and structural response of the horizontal axis wind turbine (HAWT) blade for energy production. The baseline blade geometry is modified using a winglet at the blade's tip to enhance aerodynamic efficiency. Adding a winglet to the blade tip improves the power performance by 4.2% to 25% at different wind speeds. This paper aims to investigate the turbulence effect on a HAWT blade without and with a winglet at the tip using numerical analysis. The results found that the overall performance of the wind turbine can be influenced depending upon the turbulence intensity. The torque generation is reduced by 11% and 8.54% for a baseline blade and blade with winglet, respectively, if turbulent intensity is increased by 10 times (from 3% to 30%). Furthermore, adding a winglet at the tip of the blade increases the weight of the wind turbine system and aeroelastic instability. The one-way fluid-structure interaction approach is used to study the aeroelastic effect. Three cases of varying tip speed ratios and two material properties are assessed for HAWT blades without and with winglet. Further, the results show that the total deformation and von Mises stress are within the permissible limits for both the materials studied.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author.
REFERENCES
- 1 Ministry of New and Renewable Energy, 2019. Physical Progress Achievements, Ministry of New and Renewable Energy, Ministry of new and renewable energy, GOI.
- 2 Ministry of New and Renewable Energy, 2020. Programmes/Scheme Wise Physical Progress in 2020–21, Ministry of new and renewable energy, GOI.
- 3 National Institute of Wind Energy. India's Wind Potential Atlas at 120 m Agl. Chennai, India: Under Ministry Of New And Renewable Energy, GOI; 2019.
- 4 Global Wind Atlas. DTU. Lyngby, Denmark: World Bank Group, ESMAP, Vortex; 2018.
- 5Rathi R, Prakash C, Singh S, Krolczyk G, Pruncu CI. Measurement and analysis of wind energy potential using fuzzy based hybrid MADM approach. Energy Rep. 2020; 6: 228-237. doi:10.1016/j.egyr.2019.12.026
- 6Mentis D, Siyal SH, Korkovelos A, Howells M. A geospatial assessment of the techno-economic wind power potential in India using geographical restrictions. Renew Energy. 2016; 97: 77-88. doi:10.1016/j.renene.2016.05.057
- 7Jangid J, Bera AK, Joseph M, et al. Potential zones identification for harvesting wind energy resources in desert region of India – a multi criteria evaluation approach using remote sensing and GIS. Renew Sustain Energy Rev. 2016; 65: 1-10. doi:10.1016/j.rser.2016.06.078
- 8Satyanarayana GC, Lucy Supriya RH, Bhaskar Rao DV. Wind energy assessment over Andhra Pradesh and Telangana regions. Meteorol. Appl. 2018; 26(1): 14-29. doi:10.1002/met.1730
- 9Rahman SM, Chattopadhyay H. A new approach to estimate the Weibull parameters for wind energy assessment: case studies with four cities from the northeast and East India. Int. Trans. Electr. Energy Syst. 2020; 30(11):e12574. doi:10.1002/2050-7038.12574
- 10Rahman SM, Chattopadhyay H. Statistical assessment of wind energy potential for power generation at Imphal, Manipur (India). Energy Sources, Part A. 2019;; 1-13. doi:10.1080/15567036.2019.1675814
10.1080/15567036.2019.1675814 Google Scholar
- 11Rahman SM, Chattopadhyay H, Laishram R. Feasibility of wind energy as power generation source at Shillong (Meghalaya). Advances in Mechanical Engineering. Singapore: Springer; 2020: 1303-1313.
10.1007/978-981-15-0124-1_115 Google Scholar
- 12Madvar MD, Ahmadi F, Shirmohammadi R, Aslani A. Forecasting of wind energy technology domains based on the technology life cycle approach. Energy Rep. 2019; 5: 1236-1248. doi:10.1016/j.egyr.2019.08.069
- 13Lee MH, Shiah YC, Bai CJ. Experiments and numerical simulations of the rotor-blade performance for a small-scale horizontal axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2016; 149: 17-29.
- 14Whitcomb RT. A Design Approach and Selected Wind Tunnel Results at High Subsonic Speeds for Wing-Tip Mounted. Winglets Washington: National Aeronautics and Space Administration, 1976.
- 15Farhan A, Hassanpour A, Burns A, Motlagh YG. Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance. Renew. Energy. 2019; 131: 1255-1273. doi:10.1016/j.renene.2018.08.017
- 16Johansen J, Sørensen NN. Numerical analysis of winglets on wind turbine blades using CFD. European Wind Energy Congress. Milano: EWEA; 2007.
- 17Khalafallah MG, Ahmed AM, Emam MK. The effect of using winglets to enhance the performance of swept blades of a horizontal axis wind turbine. Adv Mech Eng. 2019; 11(9):1687814019878312. doi:10.1177/1687814019878312
- 18Madsen, H.A., Fuglsang, P., 1997. Numerical investigation of different tip shapes for wind turbine blades. Aerodynamic and Aeroacoustic Aspects. Denmark. N. P..
- 19Al-Abadi A, Kim Y, Ertunç Ö, Epple P, Delgado A. Interaction between free-stream turbulence and tip-vortices of wind turbine blades with and without winglets. J. Phys.: Conf. Ser. 2018; 1037(7):072025.
10.1088/1742-6596/1037/7/072025 Google Scholar
- 20Reddy SR, Dulikravich GS, Sobieczky H, Gonzalez M. Bladelets—winglets on blades of wind turbines: a multiobjective design optimization study. J. Sol. Energy Eng. 2019; 141(6):061003. doi:10.1115/1.4043657
- 21Guerrero J, Sanguineti M, Wittkowski K. CFD study of the impact of variable cant angle winglets on total drag reduction. Aerospace. 2018; 5(4): 126. doi:10.3390/aerospace5040126
- 22Gueraiche D, Popov S. Winglet geometry impact on DLR-F4 aerodynamics and an analysis of a hyperbolic winglet concept. Aerospace. 2017; 4(4): 60. doi:10.3390/aerospace4040060
10.3390/aerospace4040060 Google Scholar
- 23Abdelghany, E.S., Khalil, E.E., Abdellatif, O.E. and Elhariry, G., 2016. Air Craft Winglet Design and Performance: Cant Angle Effect. 14th International Energy Conversion Engineering Conference, Salt Lake City, UT2016.
- 24Deshmukh S, Bhattacharya S, Singh V, Kumar R. Aerodynamic and aeroacoustic study of horizontal axis wind turbine with winglets.B.Tech. Thesis; Department of Mechanical Engineering, MNNIT Allahabad, India, 2018.
- 25Nedjari HD, Guerri O, Saighi M. Full rotor modelling and generalized actuator disc for wind turbine wake investigation. Energy Rep. 2020; 6: 232-255. doi:10.1016/j.egyr.2019.10.041
- 26Lopez-Villalobos CA, Rodriguez-Hernandez O, Campos-Amezcua R, Hernandez-Cruz G, Jaramillo OA, Mendoza JL. Wind turbulence intensity at La Ventosa, Mexico: a comparative study with the IEC61400 standards. Energies. 2018; 11(11): 3007. doi:10.3390/en11113007
- 27Ren G, Liu J, Wan J, Li F, Guo Y, Yu D. The analysis of turbulence intensity based on wind speed data in onshore wind farms. Renew Energy. 2018; 123: 756-766. doi:10.1016/j.renene.2018.02.080
- 28Bangga G, Kim Y, Lutz T, Weihing P, Krämer E. Investigations of the inflow turbulence effect on rotational augmentation by means of CFD. J. Phys.: Conf. Ser. 2016; 753(2):022026.
10.1088/1742-6596/753/2/022026 Google Scholar
- 29Kawashima Y, Uchida T. Effects of terrain-induced turbulence on wind turbine blade fatigue loads. Energy Power Eng. 2017; 9: 843-857.
10.4236/epe.2017.913053 Google Scholar
- 30Sicot C, Aubrun S, Loyer S, Devinant P. Unsteady characteristics of the static stall of an airfoil subjected to freestream turbulence level up to 16%. Exp. Fluids. 2006; 41(4): 641-648.
- 31Sicot C, Devinant P, Laverne T, Loyer S, Hureau J. Experimental study of the effect of turbulence on horizontal axis wind turbine aerodynamics. Wind Energy. 2006; 9(4): 361-370. doi:10.1002/we.184
- 32Sicot C, Devinant P, Loyer S, Hureau J. Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms. J. Wind Eng. Ind. Aerodyn. 2008; 96(8–9): 1320-1331. doi:10.1016/j.jweia.2008.01.013
- 33Chu CR, Chiang PH. Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine. J. Wind Eng. Ind. Aerodyn. 2014; 124: 82-89.
- 34Li Q, Kamada Y, Maeda T, Murata J, Yusuke N. Effect of turbulence on power performance of a horizontal axis wind turbine in yawed and no-yawed flow conditions. Energy. 2016; 109: 703-711. doi:10.1016/j.energy.2016.05.078
- 35Li Q, Kamada Y, Maeda T, Murata J, Nishida Y. Visualization of the flow field and aerodynamic force on a horizontal axis wind turbine in turbulent inflows. Energy. 2016; 111: 57-67. doi:10.1016/j.energy.2016.05.098
- 36Li Q, Kamada Y, Maeda T, Murata J, Nishida Y. Effect of turbulent inflows on airfoil performance for a horizontal axis wind turbine at low Reynolds numbers (part I: static pressure measurement). Energy. 2016; 111: 701-712. doi:10.1016/j.energy.2016.06.021
- 37Li Q, Kamada Y, Maeda T, Murata J, Nishida Y. Effect of turbulent inflows on airfoil performance for a horizontal axis wind turbine at low Reynolds numbers (part II: dynamic pressure measurement). Energy. 2016; 112: 574-587. doi:10.1016/j.energy.2016.06.126
- 38Li Q, Murata J, Endo M, Maeda T, Kamada Y. Experimental and numerical investigation of the effect of turbulent inflow on a horizontal axis wind turbine (part I: power performance). Energy. 2016; 113: 713-722. doi:10.1016/j.energy.2016.06.138
- 39Li Q, Kamada Y, Maeda T, Nishida Y. Experimental investigations of boundary layer impact on the airfoil aerodynamic forces of horizontal Axis wind turbine in turbulent inflows. Energy. 2017; 135: 799-810. doi:10.1016/j.energy.2017.06.174
- 40Li Q, Xu J, Maeda T, et al. Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a horizontal axis wind turbine in boundary layer. Energy. 2019; 183: 341-357. doi:10.1016/j.energy.2019.06.150
- 41Evans SP, Bradney DR, Clausen PD. Development and experimental verification of a 5 kW small wind turbine aeroelastic model. J. Wind Eng. Ind. Aerodyn. 2018; 181: 104-111. doi:10.1016/j.jweia.2018.08.011
- 42Howison J, Thomas J, Ekici K. Aeroelastic analysis of a wind turbine blade using the harmonic balance method. Wind Energy. 2018; 21(4): 226-241. doi:10.1002/we.2157
- 43Ismaiel A, Yoshida S. Aeroelastic analysis of a coplanar twin-rotor wind turbine. Energies. 2019; 12(10): 1881. doi:10.3390/en12101881
- 44Lee JW, Lee JS, Han JH, Shin HK. Aeroelastic analysis of wind turbine blades based on modified strip theory. J. Wind Eng. Ind. Aerodyn. 2012; 110: 62-69. doi:10.1016/j.jweia.2012.07.007
- 45Tang D, Bao S, Luo L, Mao J, Lv B, Guo H. Study on the aeroelastic responses of a wind turbine using a coupled multibody-FVW method. Energy. 2017; 141: 2300-2313. doi:10.1016/j.energy.2017.11.105
- 46Doggett Jr, R.V., Farmer, M.G., 1976. Preliminary Study of Effects of Winglets on Wing Flutter Technical Memorandum.
- 47Ruhlin, C.L., Bhatia, K.G., Nagaraja, K.S., 1986. Effects of Winglet on Transonic Flutter Characteristics of a Cantilevered Twin-Engine-Transport Wing Model Technical Publication.
- 48Cui P, Han J. Prediction of flutter characteristics for a transport wing with wing-tip devices. Aerosp. Sci. Technol. 2012; 23(1): 461-468. doi:10.1016/j.ast.2011.10.005
- 49Lin Y, Tu L, Liu H, Li W. Fault analysis of wind turbines in China. Renew. Sustain. Energy Rev. 2016; 55: 482-490. doi:10.1016/j.rser.2015.10.149
- 50Wang L, Quant R, Kolios A. Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA. J. Wind Eng. Ind. Aerodyn. 2016; 158: 11-25. doi:10.1016/j.jweia.2016.09.006
- 51Santo G, Peeters M, Van Paepegem W, Degroote J. Dynamic load and stress analysis of a large horizontal axis wind turbine using full scale fluid-structure interaction simulation. Renew. Energy. 2019; 140: 212-226. doi:10.1016/j.renene.2019.03.053
- 52Rafiee R, Tahani M, Moradi M. Simulation of aeroelastic behavior in a composite wind turbine blade. J. Wind Eng. Ind. Aerodyn. 2016; 151: 60-69. doi:10.1016/j.jweia.2016.01.010
- 53Dai L, Zhou Q, Zhang Y, Yao S, Kang S, Wang X. Analysis of wind turbine blades aeroelastic performance under yaw conditions. J. Wind Eng. Ind. Aerodyn. 2017; 171: 273-287. doi:10.1016/j.jweia.2017.09.011
- 54Barr SM, Jaworski JW. Optimization of tow-steered composite wind turbine blades for static aeroelastic performance. Renew. Energy. 2019; 139: 859-872. doi:10.1016/j.renene.2019.02.125
- 55Li Z, Wen B, Dong X, Peng Z, Qu Y, Zhang W. Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows. J. Wind Eng. Ind. Aerodyn. 2020; 197:104057.
- 56Lee K, Huque Z, Kommalapati R, Han SE. Evaluation of equivalent structural properties of NREL phase VI wind turbine blade. Renew. Energy. 2016; 86: 796-818. doi:10.1016/j.renene.2015.07.096
- 57Lee K, Huque Z, Kommalapati R, Han SE. Fluid-structure interaction analysis of NREL phase VI wind turbine: aerodynamic force evaluation and structural analysis using FSI analysis. Renew. Energy. 2017; 113: 512-531. doi:10.1016/j.renene.2017.02.071
- 58Kumar A, Dwivedi A, Paliwal V, Patil PP. Free vibration analysis of Al 2024 wind turbine blade designed for Uttarakhand region based on FEA. Proc. Technol. 2014; 14: 336-347. doi:10.1016/j.protcy.2014.08.044
10.1016/j.protcy.2014.08.044 Google Scholar
- 59Okokpujie IP, Okonkwo UC, Bolu CA, Ohunakin OS, Agboola MG, Atayero AA. Implementation of multi-criteria decision method for selection of suitable material for development of horizontal wind turbine blade for sustainable energy generation. Heliyon. 2020; 6(1):e03142. doi:10.1016/j.heliyon.2019.e03142
- 60Ravikumar S, Jaswanthvenkatram V, Sohaib SM. Design and analysis of wind turbine blade hub using Aluminium alloy AA 6061-T6. IOP Conf. Ser.: Mater. Sci. Eng. 2017; 197(1):012044. doi:10.1088/1757-899X/197/1/012044
10.1088/1757?899X/197/1/012044 Google Scholar
- 61 International Electrotechnical Commission, IEC Wind Turbines – Part 1: Design Requirements. Tech. Rep. 61400–1 Ed.3, (2005).
- 62Hand, M.M., Simms, D.A., Fingersh, L.J., Jager, D.W., Cotrell, J.R., Schreck, S., Larwood, S.M., 2001. Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns. National Renewable Energy Lab., Golden, CO.(US). NREL/TP-500-29955.
- 63Martinez J, Flaszynski P, Doerffer P, Szulc O. Improvement of Wind Turbine Blade Performance by Means of Rod Vortex Generators. Cham: Mare-Wint. Springer; 2016: 81-102.
- 64Aksenov, A., Ozturk, U., Yu, C., Byvaltsev, P., Soganci, S. and Tutkun, O., 2017. A validation study using NREL phase VI experiments, part I: low computational resource scenario. 12th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics. European Turbomachinery Society. 10.29008/ETC2017-365
10.29008/ETC2017?365 Google Scholar
- 65van Rooij RPJOM, Arens EA. Analysis of the experimental and computational flow characteristics with respect to the augmented lift phenomenon caused by blade rotation. J. Phys.: Conf. Ser. 2007; 75(1):012021.
10.1088/1742-6596/75/1/012021 Google Scholar
- 66Sørensen NN, Michelsen J, Schreck S. Navier–stokes predictions of the NREL phase VI rotor in the NASA Ames 80ft_120 ft wind tunnel. Wind Energy. 2002; 5: 151-169. doi:10.1002/we.64
10.1002/we.64 Google Scholar
- 67Mo JO, Lee YH. CFD investigation on the aerodynamic characteristics of a small-sized wind turbine of NREL PHASE VI operating with a stall-regulated method. J. Mech. Sci. Technol. 2012; 26: 81-92.
- 68Gharali K, Johnson DA. Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies. Appl Energy. 2012; 93: 45-52. doi:10.1016/j.apenergy.2011.04.037
- 69Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 1994; 32(8): 1598-1605. doi:10.2514/3.12149
- 70Menter FR. Zonal two equation k-ω turbulence models for aerodynamic flows. AIAA. 1993; 93: 2906. doi:10.2514/6.1993-2906
10.2514/6.1993?2906 Google Scholar
- 71Yelmule MM, Vsj EA. CFD predictions of NREL phase VI rotor experiments in NASA/AMES wind tunnel. Int. J. Renew. Energy Res. 2013; 3(2): 261-269.
- 72Simms, D., Schreck, S., Hand, M., Fingersh, L.J., 2001. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements. National Renewable Energy Lab, Golden, CO (US) (No. NREL/TP-500-29494). DOI: 10.2172/783409
10.2172/783409 Google Scholar
- 73Hunt, J.C., Wray, A.A. and Moin, P., 1988. Eddies, Streams, and Convergence Zones in Turbulent Flows. Center for turbulence research.
- 74Kolář V. Vortex identification: new requirements and limitations. Int. J. Heat Fluid Flow. 2007; 28(4): 638-652. doi:10.1016/j.ijheatfluidflow.2007.03.004
- 75 Ferguson Perforating Material properties data: 6061-T6 Aluminium alloy. https://www.fergusonperf.com/the-perforating-process/material-information/specialized-aluminum/6061-aluminium-alloy/ 2020