Enhanced thermophysical properties in spinel CuFe2O4-based nanofluids for concentrated solar power
Corresponding Author
Teresa Aguilar
Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
Correspondence
Teresa Aguilar and Javier Navas, Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain.
Email: [email protected] (T. S.), [email protected] (J. N.)
Search for more papers by this authorIván Carrillo-Berdugo
Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
Search for more papers by this authorRodrigo Alcántara
Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
Search for more papers by this authorCorresponding Author
Javier Navas
Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
Correspondence
Teresa Aguilar and Javier Navas, Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain.
Email: [email protected] (T. S.), [email protected] (J. N.)
Search for more papers by this authorCorresponding Author
Teresa Aguilar
Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
Correspondence
Teresa Aguilar and Javier Navas, Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain.
Email: [email protected] (T. S.), [email protected] (J. N.)
Search for more papers by this authorIván Carrillo-Berdugo
Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
Search for more papers by this authorRodrigo Alcántara
Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
Search for more papers by this authorCorresponding Author
Javier Navas
Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain
Correspondence
Teresa Aguilar and Javier Navas, Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, Cádiz, Spain.
Email: [email protected] (T. S.), [email protected] (J. N.)
Search for more papers by this authorFunding information: Agencia de Innovación y Desarrollo de Andalucía, Grant/Award Number: FEDER-UCA18-107510; Ministerio de Ciencia e Innovación, Grant/Award Numbers: RTI2018-096393-B-I00, UNCA15-CE-2945; Ministerio de Universidades, Grant/Award Number: FPU16/02425
Summary
Concentrating solar power (CSP) technology has been recognized as a technology with high potential to reduce greenhouse gas emission and to transform the electric generation system towards zero emissions. But, the energy conversion between solar to electric energy should be improved, and for this, the use of higher efficient heat transfer fluid (HTF) is one of the main challenges to reach. Then, a promising strategy is the use of nanofluids as HTF in CSP plants. Thus, in this work, CuFe2O4-based nanofluids have been tested in the main properties, such as long-term stability, and rheological and thermal properties. The results showed that the nanofluids reached the physical and chemical stability. Additionally, at 363 K, the relative thermal conductivity of the nanofluids was improved by up to 68.5% in the case of the nanofluid with the highest concentration of both nanoparticles and surfactant. Finally, the efficiency of these nanofluids was analysed considering the possible application in CSP plants. An enhancement of up to 35% in efficiency was found.
Open Research
DATA AVAILABILITY STATEMENT
Data available on request from the authors.
Supporting Information
Filename | Description |
---|---|
er7484-sup-0001-Figures.pdfPDF document, 2.1 MB | Figure S1 UV-vis spectra for the nanofluids registered at t = 0 Figure S2 Isobaric specific heat of the nanofluids grouped by the ratio of surfactant Figure S3 Enhancement of thermal conductivity of nanofluids vs temperature Figure S4 Ur values calculated vs temperature for all the nanofluids at flow rate between 100 and 300·L·min-1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Behar O, Khellaf A, Mohammedi K. A review of studies on central receiver solar thermal power plants. Renew Sustain Energy Rev. 2013; 23: 12-39.
- 2Liu M, Steven Tay NH, Bell S, et al. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew Sustain Energy Rev. 2016; 53: 1411-1432.
- 3Devabhaktuni V, Alam M, Depuru SSSR, Green RC, Nims D, Near C. Solar energy: Trends and enabling technologies. Renew Sustain Energy Rev. 2013; 19: 555-564.
- 4Cabaleiro D, Pastoriza-Gallego MJ, Piñeiro MM, Legido JL, Lugo L. Thermophysical properties of (diphenyl ether+biphenyl) mixtures for their use as heat transfer fluids. J. Chem. Thermodyn. 2012; 50: 80-88.
- 5Navas J, Sánchez-Coronilla A, Martín EI, et al. On the enhancement of heat transfer fluid for concentrating solar power using Cu and Ni nanofluids: An experimental and molecular dynamics study. Nano Energy. 2016; 27: 213-224.
- 6Singh D, Timofeeva EV, Moravek MR, et al. Use of metallic nanoparticles to improve the thermophysical properties of organic heat transfer fluids used in concentrated solar power. Solar Energy. 2014; 105: 468-478.
- 7Shahrul IM, Mahbubul IM, Khaleduzzaman SS, Saidur R, Sabri MFM. A comparative review on the specific heat of nanofluids for energy perspective. Renew Sustain Energy Rev. 2014; 38: 88-98.
- 8Riazi H, Murphy T, Webber GB, Atkin R, Tehrani SSM, Taylor RA. Specific heat control of nanofluids: A critical review. Int. J. Therm. Sci. 2016; 107: 25-38.
- 9Kulkarni DP, Das DK, Vajjha RS. Application of nanofluids in heating buildings and reducing pollution. Appl Energy. 2009; 86: 2566-2573.
- 10Wang C, Yang J, Ding Y. Phase transfer based synthesis and thermophysical properties of Au/Therminol VP-1 nanofluids. Prog. Nat. Sci.: Mater. Int. 2013; 23: 338-342.
- 11Gómez-Villarejo R, Martín EI, Navas J, et al. Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights. Appl Energy. 2017; 194: 19-29.
- 12Gomez-Villarejo R, Navas J, Martin EI, et al. Preparation of Au nanoparticles in a non-polar medium: obtaining high-efficiency nanofluids for concentrating solar power. An experimental and theoretical perspective. J Mater Chem A. 2017; 5: 12483-12497. doi:10.1039/C7TA00986K
- 13Suganthi KS, Leela Vinodhan V, Rajan KS. Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl Energy. 2014; 135: 548-559.
- 14Khairul MA, Shah K, Doroodchi E, Azizian R, Moghtaderi B. Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids. Int. J. Heat Mass Transfer. 2016; 98: 778-787.
- 15Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material. Thermochimica Acta. 2012; 533: 46-55.
- 16Fakoor Pakdaman M, Akhavan-Behabadi MA, Razi P. An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp. Therm. Fluid Sci. 2012; 40: 103-111.
- 17Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci. 2003; 260: 89-94.
- 18Suganthi KS, Rajan KS. Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew Sustain Energy Rev. 2017; 76: 226-255.
- 19Amani M, Amani P, Kasaeian A, Mahian O, Kasaeian F, Wongwises S. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field. J. Magn. Magn. Mater. 2017; 428: 457-463.
- 20Omiddezyani S, Gharehkhani S, Yousefi-Asli V, et al. Experimental investigation on thermo-physical properties and heat transfer characteristics of green synthesized highly stable CoFe2O4/rGO nanofluid. Colloids Surf A Physicochem Eng Asp. 2021; 610:125923.
- 21Kirithiga R, Hemalatha J. Investigation of thermophysical properties of aqueous magnesium ferrite nanofluids. J Mol Liq. 2020; 317:113944.
- 22Shahsavar A, Khanmohammadi S, Karimipour A, Goodarzi M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network. Int. J. Heat Mass Transfer. 2019; 131: 432-441.
- 23Wang B, Wang B, Wei P, Wang X, Lou W. Controlled synthesis and size-dependent thermal conductivity of Fe3O4magnetic nanofluids. Dalton Trans. 2012; 41: 896-899.
- 24Song YY, Bhadeshia HKDH, Suh D-W. Stability of stainless-steel nanoparticle and water mixtures. Powder Technol. 2015; 272: 34-44.
- 25Asadi A, Asadi M, Siahmargoi M, Asadi T, Gholami Andarati M. The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg(OH)2 nanoparticles: An experimental investigation. Int. J. Heat Mass Transfer. 2017; 108(Part A): 191-198.
- 26Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow. 2000; 21: 58-64.
- 27Colangelo G, Favale E, Miglietta P, Milanese M, de Risi A. Thermal conductivity, viscosity and stability of Al 2 O 3 -diathermic oil nanofluids for solar energy systems. Energy. 2016; 95: 124-136.
- 28Sreeremya TS, Thulasi KM, Krishnan A, Ghosh S. A Novel Aqueous Route To Fabricate Ultrasmall Monodisperse Lipophilic Cerium Oxide Nanoparticles. Ind. Eng. Chem. Res. 2012; 51: 318-326.
- 29Li Y, Zhou JE, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009; 196: 89-101.
- 30Kearney D, Kelly B, Herrmann U, et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy. 2004; 29: 861-870.
- 31Cabaleiro D, Gracia-Fernández C, Lugo L. (Solid+liquid) phase equilibria and heat capacity of (diphenyl ether+biphenyl) mixtures used as thermal energy storage materials. J. Chem. Thermodyn. 2014; 74: 43-50.
- 32Angayarkanni SA, Philip J. Review on thermal properties of nanofluids: Recent developments. Adv Colloid Interface Sci. 2015; 225: 146-176.
- 33Russel WB, Saville DA, Schowalter WR. Colloidal Dispersions. Cambridge: Cambridge University Press; 1989.
10.1017/CBO9780511608810 Google Scholar
- 34Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O. Particle size effects in the thermal conductivity enhancement of copper-based nanofluids. Nanoscale Res Lett. 2011; 6: 217-217.
- 35Chandrasekar M, Suresh S, Senthilkumar T. Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review. Renew Sustain Energy Rev. 2012; 16: 3917-3938.
- 36Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009; 7: 141-150.
- 37Li X, Zou C, Zhou L, Qi A. Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications. Int. J. Heat Mass Transfer. 2016; 97: 631-637.
- 38Beheshti A, Shanbedi M, Heris SZ. Heat transfer and rheological properties of transformer oil-oxidized MWCNT nanofluid. J. Therm. Anal. Calorim. 2014; 118: 1451-1460.
- 39Devendiran DK, Amirtham VA. A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev. 2016; 60: 21-40.
- 40Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transfer. 1998; 11: 151-170.
- 41Strandberg R, Das DK. Influence of temperature and properties variation on nanofluids in building heating. Energ Conver Manage. 2010; 51: 1381-1390.
- 42Carrillo-Berdugo I, Midgley SD, Grau-Crespo R, Zorrilla D, Navas J. Understanding the Specific Heat Enhancement in Metal-Containing Nanofluids for Thermal Energy Storage: Experimental and Ab Initio Evidence for a Strong Interfacial Layering Effect. ACS Appl. Energy Mater. 2020; 3: 9246-9256.
- 43Sarafraz MM, Baghi AD, Safaei MR, et al. Assessment of Iron Oxide (III)–Therminol 66 Nanofluid as a Novel Working Fluid in a Convective Radiator Heating System for Buildings. Energies. 2019; 12: 4327.
- 44Sundar LS, Abebaw HM, Singh MK, Pereira AMB, Sousa ACM. Experimental Heat Transfer and Friction Factor of Fe3O4 Magnetic Nanofluids Flow in a Tube under Laminar Flow at High Prandtl Numbers. Heat Technol. (Pisa, Italy). 2020; 38: 301-313.
- 45Hussain S, Alam MM, Imran M, et al. Fe3O4 nanoparticles decorated multi-walled carbon nanotubes based magnetic nanofluid for heat transfer application. Mater Lett. 2020; 274:128043.
- 46Dittus FW, Boelter LMK. Heat Transfer in Automobile Radiators of the Tubular Type. Vol 2. Berkeley. University of California Publication of Engineering: University of California Press; 1930: 443-461.
- 47Zare V, Moalemian A. Parabolic trough solar collectors integrated with a Kalina cycle for high temperature applications: Energy, exergy and economic analyses. Energ Conver Manage. 2017; 151: 681-692.
- 48Bellos E, Tzivanidis C. Thermal efficiency enhancement of nanofluid-based parabolic trough collectors. J. Therm. Anal. Calorim. 2019; 135: 597-608.
- 49Martínez-Merino P, Midgley SD, Martín EI, et al. Novel WS2-Based Nanofluids for Concentrating Solar Power: Performance Characterization and Molecular-Level Insights. ACS Appl. Mater. Interfaces. 2020; 12: 5793-5804.
- 50Martínez-Merino P, Sani E, Mercatelli L, Alcántara R, Navas J. WSe2Nanosheets Synthesized by a Solvothermal Process as Advanced Nanofluids for Thermal Solar Energy. ACS Sustainable Chem. Eng. 2020; 8: 1627-1636.
- 51Aguilar T, Sani E, Mercatelli L, Carrillo-Berdugo I, Torres E, Navas J. Exfoliated graphene oxide-based nanofluids with enhanced thermal and optical properties for solar collectors in concentrating solar power. J Mol Liq. 2020; 306:112862.