The study of optoelectronic and thermoelectric properties of Tl2PdX6 (X = Cl, Br, I) for energy harvesting
Corresponding Author
Taharh Zelai
Department of Physics, Faculty of Science, Jazan University, Jazan, Saudi Arabia
Correspondence
Taharh Zelai, Department of Physics, Faculty of Science, Jazan University, Jazan, Saudi Arabia.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Taharh Zelai
Department of Physics, Faculty of Science, Jazan University, Jazan, Saudi Arabia
Correspondence
Taharh Zelai, Department of Physics, Faculty of Science, Jazan University, Jazan, Saudi Arabia.
Email: [email protected]
Search for more papers by this authorSummary
The double perovskite halides are practically superior materials for solar cells and renewable energy. Presently, the Tl2PdX6 (X = Cl, Br, I) are addressed for renewable energy. The tolerance factor and phonon dispersion band structures are computed to show the atomic compatibility in structure and thermodynamic stability of crystal lattice. The computed band gaps are 2.14, 1.50, and 0.80 eV for Tl2PdCl6, Tl2PdBr6, and Tl2PdI6, respectively. The absorptions bands of 359 to 459 nm, 460 to 688 nm, and 620 to 1240 nm are innovative for solar cells and infrared sensors. Thermoelectric behavior is explained in the temperature range 100 to 400 K. The power factor and figure of merit (ZT) at room temperature (0.710, 0.73, 0.732) determine outstanding thermoelectric performance. The literature of studied compounds is present; however, the family of vacancy ordered double perovskites is rich.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing does not apply to this article as no datasets were generated or analyzed during the current study (the article describes entirely theoretical research).
REFERENCES
- 1Yin WJ, Weng B, Ge J, Sun Q, Li Z, Yan Y. Oxide perovskites, double perovskites, and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy Environ Sci. 2019; 12: 442-462.
- 2Wu T, Gao P. Development of perovskite-type materials for thermoelectric application. Materials. 2018; 11: 999.
- 3Haque MA, Nugraha MI, Paleti SHK, Baran D. Role of compositional tuning on thermoelectric parameters of hybrid halide perovskites. J Phys Chem C. 2019; 123(24): 14928-14933.
- 4Xin B, Pak Y, Mitra S, et al. Self-patterned CsPbBr3 nanocrystals for high-performance optoelectronics. ACS Appl Mater Interfaces. 2019; 11(5): 5223-5231.
- 5Saliba M, Matsui T, Domanski K, et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science. 2016; 354: 206-209.
- 6Wang M, Wang W, Ma B, et al. Lead-free perovskite materials for solar cells. Nano-Micro Lett. 2021; 13: 62.
- 7Xin B, Alaal N, Mitra S, et al. Identifying carrier behavior in ultrathin indirect-bandgap CsPbX3 nanocrystal films for use in UV/visible-blind High-energy detectors. Small. 2020; 16(43):2004513.
- 8Ke W, Kanatzidis MG. Prospects for low-toxicity lead-free perovskite solar cells. Nat Commun. 2019; 10: 965.
- 9Shao S, Liu J, Portale G, et al. Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv Energy Mater. 2018; 8:1702019.
- 10Kopacic I, Friesenbichler B, Hoefler SF, et al. Enhanced performance of germanium halide perovskite solar cells through compositional engineering ACS Appl. Energy Mater. 2018; 1(2): 343-347.
- 11Kung PK, Li MH, Lin PY, et al. Lead-free double perovskites for perovskite solar cells. 2020; 4(2):1900306.
- 12Maughan AE, Ganose AM, Bordelon MM, Miller EM, Scanlon DO, Neilson JR. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J Am Chem Soc. 2016; 138(27): 8453-8464.
- 13Saparov B, Sun JP, Meng W, et al. Thin-film deposition, and characterization of a Sn-deficient perovskite derivative Cs2SnI6. Chem Mater. 2016; 28(7): 2315-2322.
- 14Bhamu KC, Sonic A, Sahariya J. Revealing optoelectronic and transport properties of potential perovskites Cs2PdX6 (X= Cl, Br): A probe from density functional theory (DFT). Solar Energy. 2018; 162: 336-343.
- 15Sajjad M, Mahmood Q, Singh N, Andreas Larsson J. Ultralow lattice thermal conductivity in double perovskite Cs2PtI6: a promising thermoelectric material. ACS Appl Energy Mater. 2020; 3(11): 11293-11299.
- 16Sakai N, High-grade AA, Filip MR, et al. Solution-processed cesium hexabromopalladate (IV), Cs2PdBr6, for optoelectronic applications. J Am Chem Soc. 2017; 139(17): 6030-6033.
- 17Zhou L, Liao JF, Huang ZG, et al. All-inorganic lead-free Cs2PdX6 (X = Br, I) perovskite nanocrystals with single unit cell thickness and high stability. ACS Energy Lett. 2018; 3(10): 2613-2619.
- 18Euvrard J, Wang X, Li T, Yan Y, Mitzi DB. Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications. J Mater Chem A. 2020; 8: 4049-4054.
- 19Cai Y, Xie W, Ding H, et al. Computational study of halide perovskite derived A2BX6 inorganic compounds: chemical trends in electronic structure and structural stability. Chem Mater. 2017; 29(18): 7740-7749.
- 20Jodlowski A, Padrón DR, Luque R, de Miguel G. Alternative perovskites for photovoltaics. Adv Energy Mater. 2018; 8(21):1703120.
- 21Deng Z, Wei F, Sun S, Kieslich G, Cheetham AK, Bristowe PD. Exploring the properties of lead-free hybrid double perovskites using a combined computational experimental approach. J Mater Chem A. 2016; 4(31): 12025-12029.
- 22Abriel W, Ihringer J. Crystal structures and phase transition of Rb2TeBr6 (300-12.5 K). J Solid State Chem. 1984; 52: 274-280.
- 23Peresh EY, Sidei VI, Zubaka OV. Phase relations in the systems A2TeI6-Tl2TeI6 (A = K, Rb, Cs) and A2TeBr6-A2TeI6 (A = K, Rb, Cs, Tl(I)). Inorg Mater. 2005; 41: 298-302.
- 24Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J. WIEN2K, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Austria: Wien University press; 2001.
- 25Blaha P, Schwarz K, Sorantin P, Trickey SK. Full potential linearized augmented plane wave programs for crystalline systems. Comput Phys Commun. 1990; 59: 339.
- 26Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Phys Rev Lett. 2009; 102: 226401.
- 27Madsen GKH, Schwarz K, Singh DJ, BoltzTra P. A code for calculating band-structure dependent quantities. Comput Phys Commun. 2006; 175: 67.
- 28Mahmood Q, Hassan M, Murtaza G, Sajjad M, Laref A, Haq B. The theoretical investigation of electronic, magnetic, and thermoelectric behavior of LiZ2O4 (Z= Mn, Fe, co, and Ni) by modified Becke and Johnson approach. 2019; 32: 1231-1239.
- 29Mustafa GM, Noor NA, Iqbal MW, et al. Study of optoelectronic and transport properties of MgLu2Z4 (Z=S, Se) spinels for optoelectronic and energy harvesting applications. Mater Sci Sem Process. 2020; 121: 105452.
- 30Majid F, Naisr MT, Algrafy E, et al. Physical characteristics of CdZrO3 perovskite at different pressure for optoelectronic application. Mater. Sci. Res. Tech. 2020; 9: 6135-6142.
- 31Bobrov VB, Trigger SA, van Heijst GJF, Schram PPJM. Kramers-Kronig relations for the dielectric function and the static conductivity of coulomb systems. EPL. 2010; 90: 10003.
- 32Abbas SA, Mahmood I, Sajjad M, et al. Spinel-type Na2MoO4 and Na2WO4 as promising optoelectronic materials: First-principle DFT calculations. Chem Phys. 2020; 538:1109022.
- 33Yousaf M, Dalhatu SA, Murtaza G, et al. Optoelectronic properties of XIn2S4 (X= Cd, Mg) thiospinels through highly accurate all-electron FP-LAPW method coupled with modified approximations. J Alloys Compd. 2015; 625: 182-187.
- 34Noor NA, Mahmood Q, Rashid M, Haq BU, Laref A. The pressure-induced mechanical and optoelectronic behavior of cubic perovskite PbSnO3 via ab-initio investigations. Ceram Int. 2018; 44: 13750-13756.
- 35Cai M, Yin Z, Zhang M. First-principles study of optical properties of barium titanate. Appl Phys Lett. 2003; 83: 2805-2807.
- 36Macia E. Thermoelectric Materials: Advances and Applications. 1st, 1st edition ed. Singapore: Jenny Stanford Publishing; 2015.
10.1201/b18439 Google Scholar
- 37Goldsmid HJ. The Physics of Thermoelectric Energy Conversion. San Rafael, CA: Morgan & Claypool Publishers; 2017.
10.1088/978-1-6817-4641-8 Google Scholar
- 38Saini A, Nag S, Singh R, Alshaikhi AA, Kumar R. Unraveling the effect of isotropic strain on the transport properties of half-Heusler alloy LiScGe. J Alloys Compd. 2021; 859:158232.
- 39Saini A, Nag S, Singh R, Alshaikhi AA, Kumar R. Effect of temperature dependent relaxation time of charge carriers on the thermoelectric properties of LiScX (X=C, Si, Ge) half-Heusler alloys. J Alloys Compd. 2019; 806: 1536-1541.
- 40Singh D, Sajjad M, Larsson JA, Ahuja R. Promising high-temperature thermoelectric response of bismuth oxybromide. Res Phys. 2020; 19: 103584.
- 41Nazir S, Mahmood I, Noor NA, Laref A, Sajjad M. Optoelectronic pressure dependent study of alkaline earth based zirconates AZrO3 (A = Ca, Ba, Sr) using ab-initio calculations. High Energy Dens Phys. 2019; 33: 100715.
- 42Aslam M, Khan A, Hashmi MA, et al. Physical characteristics of CdZrO3 perovskite at different pressure for optoelectronic application. J Mater Res Technol. 2020; 9: 9965.