New insight on the open-circuit voltage of perovskite solar cells: The role of defect-density distribution and electric field in the active layer
Nazila Zarabinia
Department of Physics, Faculty of Sciences, University of Zanjan, Zanjan, Iran
Search for more papers by this authorCorresponding Author
Reza Rasuli
Department of Physics, Faculty of Sciences, University of Zanjan, Zanjan, Iran
Correspondence
Reza Rasuli, Department of Physics, Faculty of Sciences, University of Zanjan, Zanjan, P.O. Box 45371-38791, Iran.
Email: [email protected]
Search for more papers by this authorEzeddin Mohajerani
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
Search for more papers by this authorNazila Zarabinia
Department of Physics, Faculty of Sciences, University of Zanjan, Zanjan, Iran
Search for more papers by this authorCorresponding Author
Reza Rasuli
Department of Physics, Faculty of Sciences, University of Zanjan, Zanjan, Iran
Correspondence
Reza Rasuli, Department of Physics, Faculty of Sciences, University of Zanjan, Zanjan, P.O. Box 45371-38791, Iran.
Email: [email protected]
Search for more papers by this authorEzeddin Mohajerani
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
Search for more papers by this authorSummary
In this article, we study the J–V characteristic of a perovskite solar cell (PSC) prepared by the two-step method. PSCs were fabricated by methylammonium lead iodide using the sequential deposition method. We describe J–V curves using a modified dynamic electrical model based on an asymmetric electric field. In addition, we simulated the PSCs by solar cell capacitance simulator package to investigate the role of trap-density distribution in cell performance. The experimentally optimized device shows an enhancement in the open-circuit voltage (VOC) from 1.08 to 1.21 V. Simulation results show that the increase in VOC up to 1.15 V is corresponding to a trap-density of 2.38×1015 cm−3. However, these results predict that a decrease in the trap-density can increases the VOC and FF up to 1.19 V and 79% while the modified dynamic electrical model gives the J–V characteristic as well as experimental results. Our results suggest that the increase in VOC can be attributed to the asymmetric electric field at the interface of the perovskite layer.
REFERENCES
- 1Turren-Cruz S-H, Saliba M, Mayer MT, et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy Environ Sci. 2018; 11(1): 78-86.
- 2Ning W, Wang F, Wu B, et al. Long electron–hole diffusion length in high-quality lead-free double perovskite films. Adv Mater. 2018; 30(20): 1706246.
- 3Bercegol A, Ory D, Suchet D, et al. Quantitative optical assessment of photonic and electronic properties in halide perovskite. Nat Commun. 2019; 10(1): 1586.
- 4Wang F, Bai S, Tress W, Hagfeldt A, Gao F. Defects engineering for high-performance perovskite solar cells. Npj Flex Electron. 2018; 2(1): 22.
10.1038/s41528-018-0035-z Google Scholar
- 5Seok SI, Grätzel M, Park NG. Methodologies toward highly efficient perovskite solar cells. Nano Micro Small. 2018; 14(20): 1704177.
- 6Wang F, Zhang Y, Yang M, et al. Achieving efficient flexible perovskite solar cells with room-temperature processed tungsten oxide electron transport layer. J Power Sources. 2019; 440: 227157.
- 7Lopez-Varo P, Jiménez-Tejada JA, García-Rosell M, et al. Device physics of hybrid perovskite solar cells: theory and experiment. Adv Energy Mater. 2018; 8(14): 1702772.
- 8Egger DA, Bera A, Cahen D, et al. What remains unexplained about the properties of halide perovskites? Adv Mater. 2018; 30(20): 1800691.
- 9Tavakoli MM, Bi D, Pan L, Hagfeldt A, Zakeeruddin SM, Grätzel M. Adamantanes enhance the photovoltaic performance and operational stability of perovskite solar cells by effective mitigation of interfacial defect states. Adv Energy Mater. 2018; 8: 1800275.
- 10Almora O, Cho KT, Aghazada S, et al. Discerning recombination mechanisms and ideality factors through impedance analysis of high-efficiency perovskite solar cells. Nano Energy. 2018; 48: 63-72.
- 11Ma Y, Hangoma PM, Park WI, et al. Controlled crystal facet of MAPbI 3 perovskite for highly efficient and stable solar cell via nucleation modulation. Nanoscale. 2019; 11(1): 170-177.
- 12Xu H, Wu Y, Xu F, et al. Grain growth study of perovskite thin films prepared by flash evaporation and its effect on solar cell performance. RSC Adv. 2016; 6(54): 48851-48857.
- 13Guo Q, Yuan F, Zhang B, et al. Passivation of the grain boundaries of CH 3 NH 3 PbI 3 using carbon quantum dots for highly efficient perovskite solar cells with excellent environmental stability. Nanoscale. 2019; 11(1): 115-124.
- 14Mahesh S, Ball JM, Oliver RDJ, et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ Sci. 2020; 13: 258-267.
- 15Corpus-Mendoza AN, Brandon SC, Guillermo RZ, Paola MM, Feng L, Hailin H. Use of magnetic fields for surface modification of PbI 2 layers to increase the performance of hybrid perovskite solar cells. J Electron Mater. 2020; 49: 3106-3113.
- 16Gujar TP, Unger T, Schönleber A, et al. The role of PbI 2 in CH 3 NH 3 PbI 3 perovskite stability, solar cell parameters and device degradation. Phys Chem Chem Phys. 2018; 20(1): 605-614.
- 17Shahiduzzaman M, Hamada K, Yamamoto K, et al. Thermal control of PbI2 film growth for two-step planar perovskite solar cells. Cryst Growth Des. 2019; 19(9): 5320-5325.
- 18Chen Y, Meng Q, Xiao Y, et al. Mechanism of PbI2 in situ passivated perovskite films for enhancing the performance of perovskite solar cells. ACS Appl Mater Interfaces. 2019; 11(47): 44101-44108.
- 19Wang M, Feng Y, Bian J, Liu H, Shi Y. A comparative study of one-step and two-step approaches for MAPbI 3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chem Phys Lett. 2018; 692: 44-49.
- 20Jacobsson TJ, Correa-Baena JP, Halvani Anaraki E, et al. Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J Am Chem Soc. 2016; 138(32): 10331-10343.
- 21Shi B, Yao X, Hou F, et al. Unraveling the passivation process of PbI2 to enhance the efficiency of planar perovskite solar cells. J Phys Chem C. 2018; 122(37): 21269-21276.
- 22Lee J-W, Bae SH, de Marco N, Hsieh YT, Dai Z, Yang Y. The role of grain boundaries in perovskite solar cells. Materials Today Energy. 2018; 7: 149-160.
- 23Cao DH, Stoumpos CC, Malliakas CD, et al. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? Appl Mater. 2014; 2(9):091101.
- 24Courtier NE, Cave JM, Foster JM, Walker AB, Richardson G. How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy Environ Sci. 2019; 12(1): 396-409.
- 25Qin J, Zhang Z, Shi W, Liu Y, Gao H, Mao Y. The optimum titanium precursor of fabricating TiO2 compact layer for perovskite solar cells. 2017; 12(1): 640.
- 26Shao F, Li X, Tian Z, et al. A modified two-step sequential deposition method for preparing perovskite CH 3 NH 3 PbI 3 solar cells. 2016; 6(48): 42377-42381.
- 27Fu Y, Meng F, Rowley MB, et al. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J Am Chem Soc. 2015; 137(17): 5810-5818.
- 28Lee JW, Park NG. Two-step deposition method for high-efficiency perovskite solar cells. Perovskite Photovolt. 2015; 40(8): 654-659.
- 29Wang W-T, Das SK, Tai Y. Fully ambient-processed perovskite film for perovskite solar cells: effect of solvent polarity on lead iodide. ACS Appl Mater Interfaces. 2017; 9(12): 10743-10751.
- 30Gaur A, Kumar P. An improved circuit model for polymer solar cells. Prog Photovolt Res Appl. 2014; 22(9): 937-948.
- 31Ren X, Wang Z, Sha WEI, Choy WCH. Exploring the way to approach the efficiency limit of perovskite solar cells by drift-diffusion model. ACS Photonics. 2017; 4(4): 934-942.
- 32Wetzelaer GJA, Max S, Araceli MS, Cristina M, Jorge Á, Henk JB. Trap-assisted non-radiative recombination in organic–inorganic perovskite solar cells. Adv Mater. 2015; 27(11): 1837-1841.
- 33Sha WE, Zhang H, Wang ZS, et al. Quantifying efficiency loss of perovskite solar cells by a modified detailed balance model. Adv Energy Mater. 2018; 8(8): 1701586.
- 34Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J Am Chem Soc. 2014; 136(33): 11610-11613.
- 35Wehrenfennig C, Giles EE, Michael BJ, Henry JS, Laura MH. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater. 2014; 26(10): 1584-1589.
- 36Eames C, Frost JM, Barnes PRF, O'Regan BC, Walsh A, Islam MS. Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun. 2015; 6: 7497.
- 37Zhang Y, Liu M, Eperon GE, et al. Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Mater Horiz. 2015; 2(3): 315-322.
- 38Leijtens T, Srimath Kandada AR, Eperon GE, et al. Modulating the electron–hole interaction in a hybrid lead halide perovskite with an electric field. J Am Chem Soc. 2015; 137(49): 15451-15459.
- 39Sherkar TS, Cristina M, Lidon GE, et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions. ACS Energy Lett. 2017; 2(5): 1214-1222.
- 40Belisle RA, William H, Andrea R, et al. Interpretation of inverted photocurrent transients in organic lead halide perovskite solar cells: proof of the field screening by mobile ions and determination of the space charge layer widths. Energy Environ Sci. 2017; 10(1): 192-204.
- 41Burgelman M, Decock K, Khelifi S, Abass A. Advanced electrical simulation of thin film solar cells. Thin Solid Films. 2013; 535: 296-301.
- 42Zhang C, Luo Y, Chen X, et al. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells. Appl Surface Sci. 2016; 388: 82-88.
- 43Abate A, Paek S, Giordano F, et al. Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells. Energy Environ Sci. 2015; 8(10): 2946-2953.
- 44Nazila Z, Rasuli R. Anchored Cu2O nanoparticles on graphene sheets as an inorganic hole transport layer for improvement in solar cell performance. Appl Phys A. 2018; 124(12): 814.
- 45Kodigala SR. Optical Properties of I–III–VI2 Compounds, in Thin Films and Nanostructures. 35, Cambridge, MA: Elsevier; 2010: 195-317.
- 46Hidouri T, Nasr S, Mal I, et al. BGaAs strain compensation layer in novel BGaAs/InGaAs/BGaAs heterostructure: exceptional tunability. Appl Surf Sci. 2020; 524: 146573.
- 47Oueslati M, Zouaghi M, Pistol ME, Samuelson L, Grimmeiss HG, Balkanski M. Photoluminescence study of localization effects induced by the fluctuating random alloy potential in indirect band-gap GaAs 1− x P x. Phys Rev B. 1985; 32(12): 8220-8227.
- 48Gharibzadeh S, Abdollahi Nejand B, Jakoby M, et al. Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv Energy Mater. 2019; 9(21): 1803699.
- 49Kirchartz T. High open-circuit voltages in lead-halide perovskite solar cells: experiment, theory and open questions. Phil Trans R Soc A. 2019; 377(2152): 20180286.
- 50Wolff CM, Caprioglio P, Stolterfoht M, Neher D. Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv Mater. 2019; 31: 1902762.
- 51Parida B, Singh A, Oh M, Jeon M, Kang JW, Kim H. Effect of compact TiO2 layer on structural, optical, and performance characteristics of mesoporous perovskite solar cells. Mater Today Commun. 2019; 18: 176-183.
- 52Zhang X-H, Ye JJ, Zhu LZ, et al. High consistency perovskite solar cell with a consecutive compact and mesoporous TiO2 film by one-step spin-coating. ACS Appl Mater Interfaces. 2016; 8(51): 35440-35446.
- 53Haider SZ, Anwar H, Wang M. A comprehensive device modelling of perovskite solar cell with inorganic copper iodide as hole transport material. Semicond Sci Technol. 2018; 33(3):035001.
- 54Ebadi F, Aryanpour M, Mohammadpour R, Taghavinia N. Coupled ionic-electronic equivalent circuit to describe asymmetric rise and decay of photovoltage profile in perovskite solar cells. Sci Rep. 2019; 9(1): 11962.
- 55Gottesman R, Lopez-Varo P, Gouda L, et al. Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays. Chem. 2016; 1(5): 776-789.