Fabrication of Coral-Shaped MoS2@Ni(Mn)VOX Electrocatalyst for Efficient Alkaline Hydrogen Evolution
Bingqian Zhang
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorYanan Li
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorJiaxin Yi
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorYi Zhang
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorXuchun Li
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorCorresponding Author
Yanqing Cong
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorBingqian Zhang
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorYanan Li
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorJiaxin Yi
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorYi Zhang
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorXuchun Li
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorCorresponding Author
Yanqing Cong
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018 China
Search for more papers by this authorAbstract
Electrochemical hydrogen production is considered as one of the most significant ways to develop clean energy in the future. Herein, the self-supporting electrocatalyst of MoS2@Ni(Mn)VO X is fabricated on 3D nickel foam (NF) by a facile two-step electrodeposition approach. The optimal MoS2@Ni(Mn)VO X electrode shows an ultralow overpotential of 61 mV to achieve a current density of 10 mA cm−2 and a Tafel slope of 35.1 mV dec−1 in 1 m KOH, which is superior to NF, MoS2@NF, NiVO X , Ni(Mn)VO X , or MoS2@NiVO X . The uniformly dispersed coral-shaped heterostructure exposes more active sites and makes the charge transfer rate faster. The outstanding synergistic effect of MoS2 and transition metal oxides of Ni, Mn, and V also contribute to the enhanced activity of the catalyst. Benefiting from these, MoS2@Ni(Mn)VO X shows superior alkaline hydrogen evolution reaction activity and long-term stability. Herein, a novel catalyst for highly efficient hydrogen evolution in alkaline media is provided.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
Filename | Description |
---|---|
ente202101007-sup-0001-SuppData-S1.pdf276.8 KB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Y. Tan, R. Xie, S. Zhao, X. Lu, L. Liu, F. Zhao, C. Li, H. Jiang, G. Chai, D. J. L. Brett, P. R. Shearing, G. He, I. P. Parkin, Adv. Funct. Mater. 2021, 31, 2105579.
- 2 Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529.
- 3 Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, 4998.
- 4 A. D. Shejale, G. D. Yadav, Int. J. Hydrog. Energy 2017, 42, 11321.
- 5 Y. Wang, B. Fang, H. Li, X. T. Bi, H. Wang, Prog. Mater. Sci. 2016, 82, 445.
- 6 J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen, X. Feng, Energy Environ. Sci. 2016, 9, 2789.
- 7 W. Wu, C. Niu, C. Wei, Y. Jia, C. Li, Q. Xu, Angew. Chem. Int. Ed. Engl. 2019, 58, 2029.
- 8 S. Xu, H. Zhao, T. Li, J. Liang, S. Lu, G. Chen, S. Gao, A. M. Asiri, Q. Wu, X. Sun, J. Mater. Chem. A 2020, 8, 19729.
- 9 R. L. King, G. G. Botte, J. Power Sources 2011, 196, 2773.
- 10 X. Wang, Y. Xu, H. Rao, W. Xu, H. Chen, W. Zhang, D. Kuang, C. Su, Energy Environ. Sci. 2016, 9, 1468.
- 11 P. Xiao, W. Chen, X. Wang, Adv. Energy Mater. 2015, 5, 1500985.
- 12 B. Liu, Y. F. Zhao, H. Q. Peng, Z. Y. Zhang, C. K. Sit, M. F. Yuen, T. R. Zhang, C. S. Lee, W. J. Zhang, Adv. Mater. 2017, 29, 1606521.
- 13 Y. Ren, Z. Li, B. Deng, C. Ye, L. Zhang, Y. Wang, T. Li, Q. Liu, G. Cui, A. M. Asiri, Y. Luo, X. Sun, Int. J. Hydrog. Energy 2022, 47, 3580.
- 14 H. Singh, R. Yadav, S. A. Farooqui, O. Dudnyk, A. K. Sinha, Int. J. Hydrog. Energy 2019, 44, 19573.
- 15 R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550.
- 16 R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 2011, 334, 1256.
- 17 T. Tang, W. J. Jiang, S. Niu, N. Liu, H. Luo, Y. Y. Chen, S. F. Jin, F. Gao, L. J. Wan, J. S. Hu, J. Am. Chem. Soc. 2017, 139, 8320.
- 18 H. Du, R. Kong, F. Qu, L. Lu, Chem. Commun. 2018, 54, 10100.
- 19 M. A. Ashraf, C. Li, B. T. Pham, D. Zhang, Int. J. Hydrog. Energy 2020, 45, 24670.
- 20 Z. Mu, T. Guo, H. Fei, Y. Mao, Z. Wu, D. Wang, Appl. Surf. Sci. 2021, 551, 149321.
- 21 S. Zhao, R. Xie, L. Kang, M. Yang, X. He, W. Li, R. Wang, D. J. L. Brett, G. He, G. Chai, I. P. Parkin, Small Sci. 2021, 1, 2100032.
- 22 Z. Chen, Y. Song, J. Cai, X. Zheng, D. Han, Y. Wu, Y. Zang, S. Niu, Y. Liu, J. Zhu, X. Liu, G. Wang, Angew. Chem. Int. Ed. Engl. 2018, 57, 5076.
- 23 D. Ji, L. Peng, J. Shen, M. Deng, Z. Mao, L. Tan, M. Wang, R. Xiang, J. Wang, S. S. A. Shah, Chem. Commun. 2019, 55, 3290.
- 24 Y. Qu, M. Yang, J. Chai, Z. Tang, M. Shao, C. T. Kwok, M. Yang, Z. Wang, D. Chua, S. Wang, Z. Lu, H. Pan, ACS Appl. Mater. Interfaces 2017, 9, 5959.
- 25 M. Ming, Y. Ma, Y. Zhang, L.-B. Huang, L. Zhao, Y.-Y. Chen, X. Zhang, G. Fan, J.-S. Hu, J. Mater. Chem. A 2018, 6, 21452.
- 26 Y. Chen, Y. Rao, R. Wang, Y. Yu, Q. Li, S. Bao, M. Xu, Q. Yue, Y. Zhang, Y. Kang, Nano. Res. 2020, 13, 2407.
- 27 Z. Qiu, C. Tai, G. A. Niklasson, T. Edvinsson, Energy Environ. Sci. 2019, 12, 572.
- 28 D. Gao, J. Guo, X. Cui, L. Yang, Y. Yang, H. He, P. Xiao, Y. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 22420.
- 29 X. Shang, J. Chi, S. Lu, B. Dong, Z. Liu, K. Yan, W. Gao, Y. Chai, C. Liu, Electrochim. Acta 2017, 256, 100.
- 30 Q. Xiong, X. Zhang, H. Wang, G. Liu, G. Wang, H. Zhang, H. Zhao, Chem. Commun. 2018, 54, 3859.
- 31 J. Hu, C. Zhang, P. Yang, J. Xiao, T. Deng, Z. Liu, B. Huang, M. K. H. Leung, S. Yang, Adv. Funct. Mater. 2019, 30, 1908520.
- 32 J. Lin, P. Wang, H. Wang, C. Li, X. Si, J. Qi, J. Cao, Z. Zhong, W. Fei, J. Feng, Adv. Sci. 2019, 6, 1900246.
- 33 G. Fang, Q. Wang, J. Zhou, Y. Lei, Z. Chen, Z. Wang, A. Pan, S. Liang, ACS Nano 2019, 13, 5635.
- 34 F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou, S. Liang, Nanomicro. Lett. 2019, 11, 11.
- 35 H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov, Y. Cui, Nano. Res. 2015, 8, 566.
- 36 D. D. Demir, A. Salcı, R. Solmaz, Int. J. Hydrog. Energy 2018, 43, 10540.
- 37 B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei, C. Wang, T. Lin, Y. Tang, S. Liang, Nano Energy 2018, 51, 579.
- 38 S. Z. Baykara, Int. J. Hydrog. Energy 2018, 43, 10605.
- 39 X. Yi, X. He, F. Yin, B. Chen, G. Li, H. Yin, Int. J. Hydrog. Energy 2020, 45, 2774.
- 40 H. Li, X. Qian, C. Xu, S. Huang, C. Zhu, X. Jiang, L. Shao, L. Hou, ACS Appl. Mater. Interfaces 2017, 9, 28394.
- 41 J. Bai, T. Meng, D. Guo, S. Wang, B. Mao, M. Cao, ACS Appl. Mater. Interfaces 2018, 10, 1678.
- 42 Y. Zhang, M. Shi, C. Wang, Y. Zhu, N. Li, X. Pu, A. Yu, J. Zhai, Sci. Bull. 2020, 65, 359.
- 43 K. Krishnamoorthy, G. K. Veerasubramani, P. Pazhamalai, S. J. Kim, Electrochim. Acta 2016, 190, 305.
- 44 L. Yang, X. Zhao, R. Yang, P. Zhao, Y. Li, P. Yang, J. Wang, D. Astruc, Appl. Surf. Sci. 2019, 491, 294.
- 45 Y. Zhang, Y. Liu, M. Ma, X. Ren, Z. Liu, G. Du, A. M. Asiri, X. Sun, Chem. Commun. 2017, 53, 11048.
- 46 X. Shang, X. Zhang, J. Xie, B. Dong, J. Chi, B. Guo, M. Yang, Y. Chai, C. Liu, Appl. Catal., B 2019, 258, 117984.
- 47 X. Yin, G. Sun, A. Song, L. Wang, Y. Wang, H. Dong, G. Shao, Electrochim. Acta 2017, 249, 52.
- 48 Y. Li, X. Tan, R. K. Hocking, X. Bo, H. Ren, B. Johannessen, S. C. Smith, C. Zhao, Nat. Commun. 2020, 11, 2720.
- 49 L. An, Y. Zhang, R. Wang, H. Liu, D. Gao, Y. Q. Zhao, F. Cheng, P. Xi, Nanoscale 2018, 10, 16539.
- 50 S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du, H. Yin, X. Bi, S. Yang, Adv. Energy Mater. 2018, 8, 1801345.
- 51 Z. Zhang, H. Zhu, J. Hao, S. Lu, F. Duan, F. Xu, M. Du, J. Colloid Interface Sci. 2021, 595, 88.
- 52 B. Lai, S. C. Singh, J. K. Bindra, C. S. Saraj, A. Shukla, T. P. Yadav, W. Wu, S. A. McGill, N. S. Dalal, A. Srivastava, C. Guo, Mater Today Chem. 2019, 14, 100207.
- 53 C. Jian, W. Hong, Q. Cai, J. Li, W. Liu, Appl. Catal., B 2020, 266, 118649.
- 54 D. Vikraman, S. Hussain, M. Ali, K. Karuppasamy, P. Santhoshkumar, J.-H. Hwang, J. Jung, H.-S. Kim, J. Alloys Compd. 2021, 868, 159272.
- 55 J. Liang, C. Ding, J. Liu, T. Chen, W. Peng, Y. Li, F. Zhang, X. Fan, Nanoscale 2019, 11, 10992.
- 56 Y. Xing, D. Li, L. Li, H. Tong, D. Jiang, W. Shi, Int. J. Hydrog. Energy 2021, 46, 7989.
- 57 H. Han, S. Park, D. Jang, W. B. Kim, J. Alloys Compd. 2021, 853, 157338.
- 58 Z. Liu, J. Jiang, Y. Liu, G. Huang, S. Yuan, X. Li, N. Li, Appl. Surf. Sci. 2021, 538, 148019.
- 59 D. Liu, H. Ai, M. Chen, P. Zhou, B. Li, D. Liu, X. Du, K. H. Lo, K. Ng, S. Wang, S. Chen, G. Xing, J. Hu, H. Pan, Small 2021, 17, 2007557.
- 60 A. Laszczyńska, W. Tylus, I. Szczygieł, Int. J. Hydrog. Energy 2021, 46, 22813.
- 61 L. Zhang, X. Gao, Y. Zhu, A. Liu, H. Dong, D. Wu, Z. Han, W. Wang, Y. Fang, J. Zhang, Z. Kou, B. Qian, T. T. Wang, Nanoscale 2021, 13, 2456.
- 62 H. Jin, S. Liu, L. Pei, G. Li, Z. Ma, W. Bai, S. Wu, Y.-J. Yuan, J. Zhong, RSC Adv. 2021, 11, 22467.
- 63 S. Zhao, J. Berry-Gair, W. Li, G. Guan, M. Yang, J. Li, F. Lai, F. Corà, K. Holt, D. J. L. Brett, G. He, I. P. Parkin, Adv. Sci. 2020, 7, 1903674.
- 64 Y. Zhang, K. Xu, B. Zhang, S. Guan, X. Fu, Z. Peng, J. Alloys Compd. 2021, 862, 158047.
- 65 J. Hao, H. Hu, Y. Dong, J. Hu, X. Sang, F. Duan, S. Lu, H. Zhu, M. Du, New J. Chem. 2021, 45, 11167.
- 66 X. Li, R. Zhang, Y. Luo, Q. Liu, S. Lu, G. Chen, S. Gao, S. Chen, X. Sun, Sustain. Energy Fuels 2020, 4, 3884.
- 67 M. Yao, B. Wang, B. Sun, L. Luo, Y. Chen, J. Wang, N. Wang, S. Komarneni, X. Niu, W. Hu, Appl. Catal., B 2021, 280, 119451.
- 68 G. B. Darband, M. Aliofkhazraei, A. S. Rouhaghdam, M. A. Kiani, Appl. Surf. Sci. 2019, 465, 846.
- 69 X. Li, R. Zhang, Y. Luo, Q. Liu, S. Lu, G. Chen, S. Gao, S. Chen, X. Sun, Sustain. Energy Fuels 2020, 4, 3884.
- 70 T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A. M. Asiri, L. Chen, X. Sun, Adv. Energy Mater. 2017, 7, 1700020.
- 71 X. Yu, S. Xu, Z. Wang, X. Cheng, Y. Du, G. Chen, X. Sun, Q. Wu, Nanoscale 2021, 13, 11069.