A Design of Flexible Triboelectric Generator Integrated with High-Efficiency Energy Storage Unit
Qi-yuan Zhang
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorJi-liang Mu
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorJin-biao Mu
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorXiang-yu Yang
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorSheng-nan Zhang
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorXiao-tao Han
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorYue-fang Zhao
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorYa-jun You
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorJun-bin Yu
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorCorresponding Author
Xiu-jian Chou
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorQi-yuan Zhang
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorJi-liang Mu
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorJin-biao Mu
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorXiang-yu Yang
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorSheng-nan Zhang
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorXiao-tao Han
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorYue-fang Zhao
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorYa-jun You
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorJun-bin Yu
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorCorresponding Author
Xiu-jian Chou
Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan, 030051 China
Search for more papers by this authorAbstract
Herein, a design of flexible triboelectric generator integrated with high-efficiency energy storage unit (FTEG-ES) is proposed. The power generation unit is a flexible triboelectric generator (FTEG). Natural rubber and polyethylene terephthalate (PET) release film with silicone oil on the surface are used as the friction layer, and the polyvinylidene fluoride (PVDF) layer prepared by electrospinning is added compared with traditional structure to improve output performance. The flexible solid-state capacitor made of chemical cross-linked poly(vinyl alcohol)−H2SO4 hydrogel (CPH) and activated carbon is used as an energy storage unit. The test results prove that adding the PVDF layer effectively increases the output performance of FTEG. The open-circuit voltage and short-circuit current are increased by 19% and 47%, respectively. The short-circuit current density and maximum output power are up to 1.30 μA cm−2 and 100 μW cm−2, respectively. The flexible solid-state capacitor can store energy more efficiently than electrolytic capacitors. The charging speed of the flexible solid-state capacitor is increased by 34.4% compared with electrolytic capacitors when charge the 1 mF capacitor to 1.5 V. Finally, the experiments show that FTEG-ES can be used as a backup power source for low-power devices. The feasibility of triboelectric generator applications is explored by this work.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente202000962-sup-0001-SuppData-S1.docx1.5 MB | Supplementary Material |
ente202000962-sup-0002-SuppData-S2.mp48.1 MB | Supplementary Material |
ente202000962-sup-0003-SuppData-S3.mp414.6 MB | Supplementary Material |
ente202000962-sup-0004-SuppData-S4.mp419.1 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) J. Chen, G. Zhu, W. Q. Yang, Q. S. Jing, P. Bai, Y. Yang, T. C. Hou, Z. L. Wang, Adv. Mater. 2013, 25, 6094; b) Z. L. Wang, Adv. Mater. 2012, 24, 280.
- 2a) Y. Q. Liu, N. Sun, J. W. Liu, Z. Wen, X. H. Sun, S. T. Lee, B. Q. Sun, ACS Nano 2018, 12, 2893; b) J. W. Zhong, Q. Z. Zhong, Q. Y. Hu, N. Wu, W. B. Li, B. Wang, B. Hu, J. Zhou, Adv. Funct. Mater. 2015, 25, 1798; c) X. Zhao, D. Zhang, S. W. Xu, W. Q. Qian, W. Han, Y. Yang, Adv. Mater. Technol. 2020, 5, 2000466.
- 3E. O. M. Baik, J. Y. Lee, Sci. Technol. Adv. Mater. 2019, 20, 927.
- 4a) Z. F. Cong, W. B. Guo, Z. H. Guo, Y. H. Chen, M. M. Liu, T. T. Hou, X. Pu, W. G. Hu, Z. L. Wang, ACS Nano 2020, 14, 5590; b) H. F. Qin, G. Cheng, Y. L. Zi, G. Q. Gu, B. Zhang, W. Y. Shang, F. Yang, J. J. Yang, Z. L. Du, Z. L. Wang, Adv. Funct. Mater. 2018, 28, 1805216.
- 5G. X. Xie, X. Y. Yang, J. L. Duan, Y. Y. Duan, Q. W. Tang, J. Mater. Chem. A 2020, 8, 11966.
- 6S. R. Liu, W. Zheng, B. Yang, X. M. Tao, Nano Energy 2018, 53, 383.
- 7a) C. M. Cui, X. Z. Wang, Z. R. Yi, B. Yang, X. L. Wang, X. Chen, J. Q. Liu, C. S. Yang, ACS Appl. Mater. Interfaces 2018, 10, 3652; b) L. L. Hou, N. Wang, J. Wu, Z. M. Cui, L. Jiang, Y. Zhao, Adv. Funct. Mater. 2018, 28, 1801114; c) B. Yu, H. Yu, T. Huang, H. Z. Wang, M. F. Zhu, Nano Energy 2018, 48, 464.
- 8a) G. Khandelwal, A. Chandrasekhar, R. Pandey, N. P. M. J. Raj, S. J. Kim, Sens. Actuators, B 2019, 282, 590; b) A. Sutka, J. Ruza, M. Jarvekulg, A. Linarts, K. Malnieks, V. Jurkans, I. Gornevs, J. Blums, K. Rubenis, M. Knite, J. Electrostat. 2018, 92, 1.
- 9a) Z. Saadatnia, S. G. Mosanenzadeh, E. Esmailzadeh, H. E. Naguib, Sci. Rep. 2019, 9, 1370; b) H. Y. Mi, X. Jing, Z. Y. Cai, Y. J. Liu, L. S. Turng, S. Q. Gong, Nanoscale 2018, 10, 23131; c) Q. Zheng, Y. Zou, Y. L. Zhang, Z. Liu, B. J. Shi, X. X. Wang, Y. M. Jin, H. Ouyang, Z. Li, Z. L. Wang, Sci. Adv. 2016, 2, e1501478; d) H. Y. Mi, X. Jing, Q. F. Zheng, L. M. Fang, H. X. Huang, L. S. Turng, S. Q. Gong, Nano Energy 2018, 48, 327.
- 10J. T. McCann, M. Marquez, Y. N. Xia, J. Am. Chem. Soc. 2006, 128, 1436.
- 11J. H. Zhang, Y. Li, X. H. Hao, Nanotechnology 2020, 31, 215401.
- 12a) X. Jing, H. Li, H. Y. Mi, P. Y. Feng, X. M. Tao, Y. J. Liu, C. T. Liu, C. Y. Shen, ACS Appl. Mater. Interfaces 2020, 12, 23474; b) W. Seung, H. J. Yoon, T. Y. Kim, M. Kang, J. Kim, H. Kim, S. M. Kim, S. W. Kim, Adv. Funct. Mater. 2020, 30, 2002401; c) H. M. Wang, L. Xu, Y. Bai, Z. L. Wang, Nat. Commun. 2020, 11, 4203; d) K. Q. Xia, Z. W. Xu, Smart Mater. Struct. 2020, 29, 095016; e) C. F. Pan, D. Y. Liu, M. J. Ford, C. Majidi, Adv. Mater. Technol. 2020, 5, 2000754.
- 13a) C. C. Qian, L. H. Li, M. Gao, H. Y. Yang, Z. R. Cai, B. D. Chen, Z. Y. Xiang, Z. J. Zhang, Y. L. Song, Nano Energy 2019, 63, 103885; b) Z. Haider, A. Haleem, R. U. S. Ahmad, U. Farooq, L. Shi, U. P. Claver, K. Memon, A. Fareed, I. Khan, M. K. Mbogba, S. M. C. Hossain, F. Farooq, W. Ali, M. Abid, A. Qadir, W. D. He, J. K. Luo, G. Zhao, Nano Energy 2020, 68, 104294; c) S. Pyo, M. O. Kim, D. S. Kwon, W. Kim, J. H. Yang, H. S. Cho, J. H. Lee, J. Kim, Smart Mater. Struct. 2020, 29, 055026; d) H. Lee, H. E. Lee, H. S. Wang, S. M. Kang, D. Lee, Y. H. Kim, J. H. Shin, Y. W. Lim, K. J. Lee, B. S. Bae, Adv. Funct. Mater. 2020, 30, 2005610.
- 14G. Zhu, C. F. Pan, W. X. Guo, C. Y. Chen, Y. S. Zhou, R. M. Yu, Z. L. Wang, Nano Lett. 2012, 12, 4960.
- 15a) B. Fatma, S. Gupta, C. Chatterjee, R. Bhunia, V. Verma, A. Garg, J. Mater. Chem. A 2020, 8, 15023; b) G. Kalimuldina, N. Turdakyn, I. Abay, A. Medeubayev, A. Nurpeissova, D. Adair, Z. Bakenov, Sensors (Basel, Switzerland) 2020, 20, 5214; c) M. Wang, Z. W. Xu, Y. F. Hou, P. Li, H. X. Sun, Q. J. Niu, Sep. Purif. Technol. 2020, 251, 117408.
- 16a) Z. Q. Niu, W. Y. Zhou, X. D. Chen, J. Chen, S. S. Xie, Adv. Mater. 2015, 27, 6002; b) B. Anothumakkool, A. T. A. Torris, S. N. Bhange, S. M. Unni, M. V. Badiger, S. Kurungot, ACS Appl. Mater. Interfaces 2013, 5, 13397; c) H. Y. Du, Z. M. Wu, Y. Y. Xu, S. Z. Liu, H. M. Yang, Polymers-Basel 2020, 12.
- 17L. M. Zang, Q. F. Liu, J. H. Qiu, C. Yang, C. Wei, C. J. Liu, L. Lao, ACS Appl. Mater. Interfaces 2017, 9, 33941.
- 18a) K. L. Wang, Y. H. Cao, X. M. Wang, Q. H. Fan, W. Gibbons, T. Johnson, B. Luo, Z. R. Gu, Energy 2016, 94, 666; b) S. Nadakatti, M. Tendulkar, M. Kadam, Desalination 2011, 268, 182; c) I. I. G. Inal, S. M. Holmes, A. Banford, Z. Aktas, Appl. Surf. Sci. 2015, 357, 696.
- 19a) Y. P. Zhai, Y. Q. Dou, D. Y. Zhao, P. F. Fulvio, R. T. Mayes, S. Dai, Adv. Mater. 2011, 23, 4828; b) G. P. Wang, L. Zhang, J. J. Zhang, Chem. Soc. Rev. 2012, 41, 797.
- 20a) X. Li, Y. Tang, J. H. Song, W. Yang, M. S. Wang, C. Z. Zhu, W. G. Zhao, J. M. Zheng, Y. H. Lin, Carbon 2018, 129, 236; b) S. L. Jiang, T. L. Shi, X. B. Zhan, H. Long, S. Xi, H. Hu, Z. R. Tang, J. Power Sources 2014, 272, 16; c) L. Y. Yu, L. F. Hu, B. Anasori, Y. T. Liu, Q. Z. Zhu, P. Zhang, Y. Gogotsi, B. Xu, ACS Energy Lett. 2018, 3, 1597.
- 21Y. E. Shin, J. E. Lee, Y. Park, S. H. Hwang, H. G. Chae, H. Ko, J. Mater. Chem. A 2018, 6, 22879.
- 22a) F. R. Fan, W. Tang, Z. L. Wang, Adv. Mater. 2016, 28, 4283; b) G. G. Cheng, S. Y. Jiang, K. Li, Z. Q. Zhang, Y. Wang, N. Y. Yuan, J. N. Ding, W. Zhang, Appl. Surf. Sci. 2017, 412, 350.
- 23a) X. Yang, F. Zhang, L. Zhang, T. F. Zhang, Y. Huang, Y. S. Chen, Adv. Funct. Mater. 2013, 23, 3353; b) A. Izadi-Najafabadi, D. N. Futaba, S. Iijima, K. Hata, J. Am. Chem. Soc. 2010, 132, 18017; c) Q. T. Qu, B. Wang, L. C. Yang, Y. Shi, S. Tian, Y. P. Wu, Electrochem. Commun. 2008, 10, 1652.
- 24I. S. Ike, I. Sigalas, S. Iyuke, Phys. Chem. Chem. Phys. 2016, 18, 661.