Optimization and Analysis of Minimizing Exergy Loss in Ironmaking System
Jianfei He
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorWeilong Zhang
Steelmaking Plant, Shougang Jingtang Iron & Steel Co., Ltd., Tangshan, Hebei, 063200 P. R. China
Search for more papers by this authorHongming Na
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorJingchao Sun
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorYuxing Yuan
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorZiyang Qiu
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorTianyi Yan
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorCorresponding Author
Tao Du
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorJianfei He
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorWeilong Zhang
Steelmaking Plant, Shougang Jingtang Iron & Steel Co., Ltd., Tangshan, Hebei, 063200 P. R. China
Search for more papers by this authorHongming Na
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorJingchao Sun
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorYuxing Yuan
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorZiyang Qiu
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorTianyi Yan
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorCorresponding Author
Tao Du
SEP Key Laboratory of Eco-Industry, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
School of Metallurgy, Northeastern University, Shenyang, Liaoning, 110819 P. R. China
Search for more papers by this authorAbstract
Application of energy saving and consumption reduction technologies in the iron and steel industry (ISI) is an effective way to achieve sustainable development. As the highly energy-consuming ironmaking system is an important part of steel production, reducing its exergy loss is of great significance for overall energy saving in ISI. The optimization model of the ironmaking system is established in this study based on the law of conservation of mass and the second law of thermodynamics. For the target of minimum exergy loss, material and energy systems of ironmaking are optimized and analyzed. Factors that influence the ironmaking system are further discussed. The results show that the minimum exergy loss of the ironmaking system is 4605.80 MJ t-HM−1 by improving operation conditions. Among them, 51.15% of the total exergy loss is contributed by the blast furnace ironmaking process.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 Worldsteel Association, World Steel in Figures 2010 to 2020, https://www.worldsteel.org/steel-by-topic/statistics/World-Steel-InFigures.html (accessed: June 2020).
- 2W. Sun, Q. Wang, Z. Zheng, J. Cai, Energy Convers. Manage. 2020, 213, 112828.
- 3H. Na, T. Du, W. Sun, J. He, J. Sun, Y. Yuan, Z. Qiu, Int. J. Energy Res. 2019, 43, 5659.
- 4L. Chen, B. Yang, X. Shen, Z. Xie, F. Sun, Appl. Thermal Eng. 2016, 86, 151.
- 5F. Meng, L. Chen, F. Sun, B. Yang, Energy 2014, 66, 965.
- 6C. X. Liu, Z. H. Xie, F. R. Sun, L. G. Chen, Appl. Thermal Eng. 2016, 103, 1087.
- 7H. Feng, L. Chen, X. Liu, Z. Xie, F. Sun, Sci. China-Technol. Sci. 2016, 59, 1687.
- 8X. Shen, L. G. Chen, S. J. Xia, X. Y. Qin, Z. H. Xie, Sci. China-Technol. Sci. 2017, 60, 1625.
- 9X. Liu, H. Feng, L. Chen, Arab. J. Sci. Eng. 2018, 43, 5003.
- 10L. Chen, X. Liu, H. Feng, Y. Ge, Z. Xie, Sci. China-Technol. Sci. 2018, 61, 496.
- 11J. C. Sun, T. Du, W. Sun, H. Na, J. He, Z. Qiu, Y. Yuan, Y. Li, Sci. Total Environ. 2019, 690, 1190.
- 12H. J. Feng, L. G. Chen, X. Liu, Z. H. Xie, Int. J. Heat Mass Transfer 2017, 111, 1192.
- 13C. K. Gao, H. M. Na, K. Song, F. Tian, N. Strawa, T. Du, Sci. Total Environ. 2020, 699, 11.
- 14H. M. Na, C. K Gao, M. Y. Tian, Z. Q. Qi, Z. Ye, Ecological. Modelling., 2017, 365, 45.
- 15 National Bureau of Statistics, Annual data, http://www.stats.gov.cn/ (accessed: November 2019).
- 16Z. Qi, C. Jiu-Ju, Y. Tong-Hu, W. Fu-Zhong, J. Feng-Rui, in The 5th Int. Congress on the Science and Technology of Ironmaking, Shanghai 2009, pp. 628–631.
- 17Z. Utlu, U. Parali, C. Gultekin, Energy Technol. 2018, 6, 1039.
- 18X. Liu, H. Feng, L. Chen, X. Qin, F. Sun, Energy 2016, 104, 33.
- 19H. Na, T. Du, W. Sun, J. Sun, J. He, Energy Technol. 2019, 8, 1901230.
- 20B. Lu, G. Chen, D. M. Chen, W. P. Yu, Appl. Thermal Eng. 2019, 100, 285.
- 21W. Chen, X. Yin, D. Ma, Appl. Energy 2014, 136, 1174.
- 22Y. Li, L. Zhu, Appl. Energy 2014, 130, 603.
- 23A. Hasanbeigi, W. Morrow, J. Sathaye, E. Masanet, T. Xu, Energy 2019, 50, 315.
- 24C. D. Rakopoulos, E. G. Giakoumis, Progress Energy Combustion Sci. 2006, 32, 2.
- 25W. Huang, D. Zheng, X. Chen, L. Shi, X. Dai, Y. Chen, X. Jing, Renewable Energy 2020, 147, 2160.
- 26G. BoroumandJazi, B. Rismanchi, R. Saidur, Renewable Sustainable Energy Rev. 2013, 27, 198.
- 27S. Bilgen, K. Kaygusuz, Appl. Energy 2008, 85, 776.
- 28M.-J. Li, W.-Q. Tao, Appl. Energy 2017, 187, 203.
- 29N. V. Cao, J. D. Chung, Energy Technol. 2019, 7, 153.
- 30R. X. Li, H. R. Wang, Q. S. Tu, Energy Technol. 2018, 6, 1011.
- 31L. N. Guo, Z. Gao, W. Ji, H. Xu, L. Chen, J. Wang, Energy Technol. 2020, 8, 11.
- 32F. Safari, I. Dincer, Energy Convers. Manage. 2020, 205, 112182.
- 33M. Aghbashlo, M. Mandegari, M. Tabatabaei, S. Farzad, M. M. Soufiyan, J. F. Görgens, Energy 2018, 149, 623.
- 34M. H. Gong, Q. Yia, Y. Huang, G.-S. Wu, Y.-H. Hao, J. Feng, W.-Y. Li, Energy Convers. Manage. 2020, 133, 318.
- 35F. H. Kong, C. Li, Y. Zhang, Y. Gu, M. Kathe, L.-S. Fan, A. Tong, Energy Technol. 2020, 8, 11.
- 36L. G. Chen, X. Shen, S. J. Xia, F. R. Sun, Energy 2017, 118, 906.
- 37C. K. Chau, T. M. Leung, W. Y. Ng, Appl. Energy 2015, 143, 395.
- 38E. Benhelal, G. Zahedi, E. Shamsaei, A. Bahadori, J. Cleaner Product. 2013, 51, 142.
- 39A. Abadías Llamas, A. Valero Delgado, A. Valero Capilla, C. Torres Cuadra, M. Hultgren, M. Peltomäki, A. Roine, M. Stelter, M. A. Reuter, Minerals Eng. 2019, 131, 51.
- 40Y. Zhao, J. Wang, L. Cao, Y. Wang, Energy 2016, 97, 470.
- 41E. Baniasadi, Renewable Energy 2017, 102, 50.
- 42A. Colmenar-Santos, G. Zarzuelo-Puch, D. Borge-Diez, C. García-Diéguez, Renewable Energy 2016, 88, 171.
- 43T. B. He, Z. R. Chong, P. Babu, P. Linga, Energy Technol. 2020, 8, 13.
- 44J. Wu, R. Wang, G. Pu, H. Qi, Appl. Energy 2016, 183, 430.
- 45Q. Zhang, J. Xu, X. Y. Zhao, Y. J. Wang, Int. J. Exergy 2018, 26, 454.
- 46S. Qin, S. Chang, Energy 2017, 141, 435.
- 47H. Feng, L. Chen, X. Liu, Z. Xie, F. Sun, Appl. Thermal Eng. 2016, 96, 161.
- 48W. Zhang, J. Zhang, Z. Xue, Energy 2017, 121, 135.
- 49W. J. Duan, P. Li, W. Lei, W. Chen, Q. B. Yu, K. Wang, Q. Qin, JOM 2015, 67, 1079.
- 50A. Ziębik, W. Stanek, Int. J. Energy Res. 2016, 30, 203.
- 51K. Yılmaz, M. Kayfeci, A. Keçebaş, Energy 2018, 169, 684.
- 52Q. Zhang, Z. Wei, Appl. Thermal Eng. 2019, 157, 113635.
- 53L. G. Chen, H. J. Feng, Z. H. Xie, Entropy 2016, 18, 38.
- 54X. Shen, L. Chen, S. Xia, Z. Xie, X. Qin, J. Cleaner Product. 2018, 172, 2153.
- 55X. Liu, L. G. Chen, H. J. Feng, F. R. Sun, Appl. Thermal Eng. 2016, 100, 798.
- 56X. Liu, L. G. Chen, H. J. Feng, X. Y. Qin, F. R. Sun, Energy 2016, 109, 137.
- 57H. Kong, E. Qi, H. Li, G. Li, X. Zhang, Appl. Energy. 2010, 87, 2156.
- 58Y. Liu, Q. Cheng, Y. Gan, Y. Wang, Z. Li, J. Zhao, Neurocomputing 2019, 332, 100.
- 59S. M. Momeni, G. Salehi, M. E. Nimvari, Energy 2018, 162, 753.
- 60X. Liu, L. Chen, X. Qin, F. Sun, Energy 2015, 93, 10.
- 61C. He, Y. Feng, D Feng, X. Zhang, Steel Res. Int. 2018, 89, 1800065.
- 62C. Liu, Z. Xie, F. Sun, L. Chen, Energy 2017, 139, 694.
- 63S. K. Som, A. Datta, Prog. Energy Combust. Sci. 2008, 34, 351.
- 64R. Rivero, M. Garfias, Energy 2006, 31, 3310.
- 65I. Barin, F. Sauert, E. Schultze-Rhonhof, W Sheng, Thermochemical Data of Pure Substances, SERBIULA (sistema Librum 2.0), 1993, p. 1.