Heat Treatment–Controlled Morphology Modification of Electrospun Titanium Oxynitride Nanowires for Capacitive Energy Storage and Electrocatalytic Reactions
Yuseong Noh
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorYoongon Kim
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorHyunsu Han
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorSeongmin Park
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorWongeun Yoon
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorSeungjun Lee
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorJong Guk Kim
Division of Electron Microscopic Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34133 Republic of Korea
Search for more papers by this authorYoungmin Kim
Carbon Resources Institute, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114 Republic of Korea
Search for more papers by this authorHyung Ju Kim
Carbon Resources Institute, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114 Republic of Korea
Search for more papers by this authorCorresponding Author
Won Bae Kim
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorYuseong Noh
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorYoongon Kim
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorHyunsu Han
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorSeongmin Park
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorWongeun Yoon
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorSeungjun Lee
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorJong Guk Kim
Division of Electron Microscopic Research Group, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon, 34133 Republic of Korea
Search for more papers by this authorYoungmin Kim
Carbon Resources Institute, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114 Republic of Korea
Search for more papers by this authorHyung Ju Kim
Carbon Resources Institute, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114 Republic of Korea
Search for more papers by this authorCorresponding Author
Won Bae Kim
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673 Republic of Korea
Search for more papers by this authorAbstract
Herein, 1D titanium oxynitride nanowires (TiON NWs) with different morphologies are fabricated through the step-controlled heat treatments of electrospun nanowires, and their electrochemical performances are analyzed with regard to the physicochemical characteristics changed by post-annealing processes. The direct-nitridation (1step) and sequential oxidation-nitridation (2step) procedures are performed to convert as-prepared nanowires, consisting of titanium precursor and polymer, to TiON NWs (TiON-1step NW and TiON-2step NW). The TiON-1step NW exhibits relatively high surface area and pore volume, which can be attributed to small crystallite size and amorphous carbon species formed during the direct-nitridation step, whereas grain growth and carbon decomposition are observed in the TiON-2step NW. When the prepared nanowires are applied to electrochemical capacitors and oxygen reduction reactions (ORRs), the TiON-1step NW shows significantly higher performances than the TiON-2step NW (200% higher capacitance and 0.17 V lower half-wave potential in ORR). It is expected that the variation of electrochemical properties is mainly affected by morphological differences of the two TiON NWs. Residual carbon components in the TiON-1step NW also contribute to improved electrical conductivity as well as structural stability in the applied electrochemical reactions. More detailed analyses are performed to clearly elucidate the experimental results from the perspective of morphology modification.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente202000184-sup-0001-SuppData-S1.doc1.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M.-S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji, Y. Tong, Mater. Today 2017, 20, 425.
- 2C. Giordano, M. Antonietti, Nano Today 2011, 6, 366.
- 3A.-M. Alexander, J. S. J. Hargreaves, Chem. Soc. Rev. 2010, 39, 4388.
- 4J. Dong, Y. Jiang, Q. Li, Q. Wei, W. Yang, S. Tan, X. Xu, Q. An, L. Mai, J. Mater. Chem. A 2017, 5, 10827.
- 5Y. Dong, Y. Wu, M. Liu, J. Li, ChemSusChem 2013, 6, 2016.
- 6D. Choi, G. E. Blomgren, P. N. Kumta, Adv. Mater. 2006, 18, 1178.
- 7T. Sun, Q. Wu, R. Che, Y. Jiang, Y. Li, L. Yang, X. Wang, Z. Hu, ACS Catal. 2015, 5, 1857.
- 8C. Gebauer, P. Fischer, M. Wassner, T. Diemant, Z. Jusys, N. Husing, R. J. Behm, Nano Energy 2016, 29, 136.
- 9M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Gratzel, T. Ma, J. Am. Chem. Soc. 2012, 134, 3419.
- 10Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.-M. Cheng, F. Li, Nat. Commun. 2017, 8, 14627.
- 11A. Achour, R. L. Porto, M.-A. Soussou, M. Islam, M. Boujtita, K. A. Aissa, L. L. Brizoual, A. Djouadi, T. Brousse, J. Power Sources 2015, 300, 525.
- 12X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, Y. Li, Nano Lett. 2012, 12, 5376.
- 13Z. Hao, J. Chen, L. Yuan, Q. Bing, J. Liu, W. Chen, Z. Li, F. R. Wang, Y. Huang, Small 2019, 15, 1902377.
- 14J. M. Lee, H. Han, S. Jin, S. M. Choi, H. J. Kim, M. H. Seo, W. B. Kim, Energy Technol. 2019, 7, 1900312.
- 15T.-G. Jeong, D. S. Choi, H. Song, J. Choi, S.-A. Park, S. H. Oh, H. Kim, Y. Jung, Y.-T. Kim, ACS Energy Lett. 2017, 2, 327.
- 16J. Yoon, S. Kim, D. Kim, I.-D. Kim, S. Hong, K. No, Small 2015, 11, 3750.
- 17R. K. Khan, A. A. Farghaly, T. A. Silva, D. Ye, M. M. Collinson, ACS Appl. Nano Mater. 2019, 2, 1562.
- 18E. J. Lee, L. Lee, M. A. Abbas, J. H. Bang, Phys. Chem. Chem. Phys. 2017, 19, 21140.
- 19P. Yang, D. Chao, C. Zhu, X. Xia, Y. Zhang, X. Wang, P. Sun, B. K. Tay, Z. X. Shen, W. Mai, H. J. Fan, Adv. Sci. 2016, 3, 1500299.
- 20Z. Wang, Z. Li, Z. Zou, J. Power Sources 2015, 296, 53.
- 21A. Greiner, J. H. Wendorff, Angew. Chem., Int. Ed. 2007, 46, 5670.
- 22Y. Kim, J. H. Park, J. G. Kim, Y. Noh, Y. Kim, H. Hann, W. B. Kim, ChemCatChem 2017, 9, 3554.
- 23X. Zhou, C. Shang, L. Gu, S. Dong, X. Chen, P. Han, L. Li, J. Yao, Z. Liu, H. Xu, Y. Zhu, G. Cui, ACS Appl. Mater. Interfaces 2011, 3, 3058.
- 24W. Li, C.-Y. Cao, C.-Q. Chen, Y. Zhao, W.-G. Song, L. Jiang, Chem. Commun. 2011, 47, 3619.
- 25X. Zhang, Y. Hao, C. Shang, X. Chen, W. Li, S. Hu, G. Cui, Electrochim. Acta 2018, 271, 388.
- 26M. Zukalova, J. Prochazka, Z. Bastl, J. Duchoslav, L. Rubacek, D. Havlicek, L. Kavan, Chem. Mater. 2010, 22, 4045.
- 27Z. Ding, Q. Cheng, L. Zou, J. Fang, Z. Zou, H. Yang, Chem. Commun. 2017, 53, 13233.
- 28H. Kim, M. K. Cho, J. A. Kwon, Y. H. Jeong, K. J. Lee, N. Y. Kim, M. J. Kim, S. J. Yoo, J. H. Jang, Y.-J. Kim, S. W. Nam, D.-H. Lim, E. Cho, K.-Y. Lee, J. Y. Kim, Nanoscale 2015, 7, 18429.
- 29F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc. 2016, 138, 10226.
- 30M.-S. Balogun, Y. Zeng, W. Qiu, Y. Luo, A. Onnasanya, T. K. Olaniyi, Y. Tong, J. Mater. Chem. A 2016, 4, 9844.
- 31S. S. Mali, C. S. Shim, C. K. Hong, Sci. Rep. 2015, 5, 11424.
- 32A. L. Patterson, Phys. Rev. 1939, 56, 978.
- 33Y. Xu, J. Wang, L. Shen, H. Dou, X. Zhang, Electrochim. Acta 2015, 173, 680.
- 34P. Krawiec, P. L. De Cola, R. Glaser, J. Weitkamp, C. Weidenthaler, S. Kaskel, Adv. Mater. 2006, 18, 505.
- 35X. Lu, T. Liu, T. Zhai, G. Wang, M. Yu, S. Xie, Y. Ling, C. Liang, Y. Tong, Y. Li, Adv. Energy Mater. 2014, 4, 1300994.
- 36Y. Ren, Z. Ren, J. Li, S. Wangn, J. Yu, RSC Adv. 2015, 5, 106439.
- 37K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouqueroln, T. Siemieniewska, Pure Appl. Chem. 1985, 57, 603.
- 38G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 1998, 41, 207.
- 39H.-M. Lee, G. H. Jeong, S.-W. Kim, C.-K. Kim, Appl. Surf. Sci. 2017, 400, 194.
- 40T.-T. Chen, H.-P. Liu, Y.-J. Wei, I.-C. Chang, M.-H. Yang, Y.-S. Lin, K.-L. Chan, H.-T. Chiu, C.-Y. Lee, Nanoscale 2014, 6, 5106.
- 41Y. Xu, J. Wang, B. Ding, L. Shen, H. Dou, X. Zhang, ChemElectroChem 2015, 2, 2020.
- 42P. Simon, K. March, O. Stephan, Y. Leconte, C. Reynaud, N. Herlin-Boimenn, A.-M. Flank, Chem. Phys. 2013, 418, 47.
- 43T. Uozumi, K. Okada, A. Kotani, O. Durmeyer, J. P. Kappler, E. Beaurepaire, J. C. Parlebas, Europhys. Lett. 1992, 18, 85.
- 44N. Jiang, D. Sun, J. C. H. Spence, Phys. Rev. B 2007, 76, 214117.
- 45M.-H. Tuilier, M.-J. Pac, M. Girleanu, G. Covarel, G. Arnold, P. Louis, C. Rousselot, A.-M. Flank, J. Appl. Phys. 2008, 103, 083524.
- 46F. Grote, H. Zhao, Y. Lei, J. Mater. Chem. A 2015, 3, 3465.
- 47Y. Gogotsi, P. Simon, Science 2011, 334, 917.
- 48S. Zhang, N. Pan, Adv. Energy Mater. 2015, 5, 1401401.
- 49S. H. Lee, Y. Noh, Y.-R. Jo, Y. Kim, B.-J. Kim, W. B. Kim, Energy Technol. 2018, 6, 1255.
- 50Y. Noh, Y. Kim, H. Han, W.-G. Jung, J. G. Kim, Y. Kim, H. J. Kim, B.-J. Kim, W. B. Kim, ChemElectroChem 2019, 6, 2503.
- 51S. A. Melchior, K. Raju, I. S. Ike, R. M. Erasmus, G. Kabongo, I. Sigalas, S. E. Iyuke, K. I. Ozoemena, J. Electrochem. Soc. 2018, 165, A501.