Flexible Textile-Based Self-Driven Sensor Used for Human Motion Monitoring
Zhihua Ma
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620 China
Search for more papers by this authorWei Wang
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Dan Yu
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620 China
Technical Department, Saintyear Holding Group Co., Ltd, Hangzhou, 310000 China
Search for more papers by this authorZhihua Ma
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620 China
Search for more papers by this authorWei Wang
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620 China
Search for more papers by this authorCorresponding Author
Dan Yu
Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620 China
Technical Department, Saintyear Holding Group Co., Ltd, Hangzhou, 310000 China
Search for more papers by this authorAbstract
Flexible self-driven sensors can respond to tiny vibrations such as sound waves, blood pressure, heartbeat, etc., and have attracted great attention for their promising applications in wearable devices, in which the electrical signals are triggered by mechanical strength and the coupling of triboelectric and electrostatic induction. Herein, flexible self-driven sensors assembled with a chitosan (CS) film and polydimethylsiloxane (PDMS) film selected as positive and negative triboelectric layers, respectively, are presented. Conductive fabrics function as electrodes, and polyurethane (PU) foams function as flexible substrates which have advantages of simple integrated structures, ease of manufacturing, and relatively low costs. Tests confirm that the sensor has outstanding flexibility, excellent response performance, and remarkable stability. It is used for real-time monitoring of human movements, and is based on textiles, providing wearing comfort and is operated without any external power sources as the output voltage of about 30 V can support it. Owing to these advantages, it is believed that a new and convenient strategy to fabricate a novel sensor based on available materials used for human activity detecting and healthcare monitoring is achieved.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente202000164-sup-0001-SuppData-S1.docx3.9 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) W. Xu, L. B. Huang, M. C. Wong, L. Chen, G. Bai, J. Hao, Adv. Energy Mater. 2017, 7, 1601529; b) W. Ma, X. Li, H. Lu, M. Zhang, X. Yang, T. Zhang, L. Wu, G. Cao, W. Song, Nano Energy 2019, 65, 104082; c) L. Lan, T. Yin, C. Jiang, X. Li, Y. Yao, Z. Wang, S. Qu, Z. Ye, J. Ping, Y. Ying, Nano Energy 2019, 62, 319.
- 2a) S. Ankanahalli Shankaregowda, R. F. Sagade Muktar Ahmed, C. B. Nanjegowda, J. Wang, S. Guan, M. Puttaswamy, A. Amini, Y. Zhang, D. Kong, K. Sannathammegowda, F. Wang, C. Cheng, Nano Energy 2019, 66, 104141; b) Z. Qin, X. Chen, Y. Yin, G. Ma, Y. Jia, J. Deng, K. Pan, Adv. Mater. Technol. 2020, 5, 1900859.
- 3a) J. Qian, J. He, S. Qian, J. Zhang, X. Niu, X. Fan, C. Wang, X. Hou, J. Mu, W. Geng, X. Chou, Adv. Funct. Mater. 2019, 30, 1907414; b) M. Matsunaga, J. Hirotani, S. Kishimoto, Y. Ohno, Nano Energy 2019, 67, 104297.
- 4Z. Qin, Y. Yin, W. Zhang, C. Li, K. Pan, ACS Appl. Mater. Inter. 2019, 11, 12452.
- 5Z. Li, M. Zhu, J. Shen, Q. Qiu, J. Yu, B. Ding, Adv. Funct. Mater. 2019, 30, 1908411.
- 6a) C. Jiang, X. Li, Y. Yao, L. Lan, Y. Shao, F. Zhao, Y. Ying, J. Ping, Nano Energy 2019, 66, 104121; b) D. Ponnamma, H. Parangusan, A. Tanvir, M. A. A. AlMa'adeed, Mater. Design 2019, 184, 108176; c) X. Chen, J. Xiong, K. Parida, M. Guo, C. Wang, C. Wang, X. Li, J. Shao, P. S. Lee, Nano Energy 2019, 64, 103904.
- 7a) R. Cao, J. Wang, S. Zhao, W. Yang, Z. Yuan, Y. Yin, X. Du, N.-W. Li, X. Zhang, X. Li, Z. L. Wang, C. Li, Nano Res. 2018, 11, 3771; b) K. Roy, S. K. Ghosh, A. Sultana, S. Garain, M. Xie, C. R. Bowen, K. Henkel, D. Schmeiβer, D. Mandal, ACS Appl. Nano Mater. 2019, 2, 2013; c) X. Li, C. Jiang, F. Zhao, L. Lan, Y. Yao, Y. Yu, J. Ping, Y. Ying, Nano Energy 2019, 61, 78.
- 8a) Z. Haider, A. Haleem, R. u. S. Ahmad, U. Farooq, L. Shi, U. P. Claver, K. Memon, A. Fareed, I. Khan, M. K. Mbogba, S. M. C. Hossain, F. Farooq, W. Ali, M. Abid, A. Qadir, W. He, J. Luo, G. Zhao, Nano Energy 2019, 68, 104294; b) K. Xia, Y. Chi, J. Fu, Z. Zhu, H. Zhang, C. Du, Z. Xu, Microsyst. Nanoeng. 2019, 5, 26.
- 9a) C. Jiang, C. Wu, X. Li, Y. Yao, L. Lan, F. Zhao, Z. Ye, Y. Ying, J. Ping, Nano Energy 2019, 59, 268; b) Y. Cheng, D. Wu, S. Hao, Y. Jie, X. Cao, N. Wang, Z. L. Wang, Nano Energy 2019, 64, 103907.
- 10a) Q. Qiu, M. Zhu, Z. Li, K. Qiu, X. Liu, J. Yu, B. Ding, Nano Energy 2019, 58, 750; b) J. Yu, X. Hou, M. Cui, S. Shi, J. He, Y. Sun, C. Wang, X. Chou, Sci. China Mater. 2019, 62, 1423; c) L. Shi, S. Dong, P. Ding, J. Chen, S. Liu, S. Huang, H. Xu, U. Farooq, S. Zhang, S. Li, J. Luo, Nano Energy 2019, 55, 548.
- 11a) T. He, H. Wang, J. Wang, X. Tian, F. Wen, Q. Shi, J. S. Ho, C. Lee, Adv. Sci. 2019, 6, 1901437; b) Z. Haider, A. Haleem, R. u. S. Ahmad, U. Farooq, L. Shi, U. P. Claver, K. Memon, A. Fareed, I. Khan, M. K. Mbogba, S. M. C. Hossain, F. Farooq, W. Ali, M. Abid, A. Qadir, W.-D. He, J. Luo, G. Zhao, Nano Energy 2019, 68, 104294.
- 12V. A. Cao, S. Lee, M. Kim, M. M. Alam, P. Park, J. Nah, Nano Energy 2019, 67, 104300.
- 13Z. Chen, T. Lv, Y. Yao, H. Li, N. Li, Y. Yang, K. Liu, G. Qian, X. Wang, T. Chen, J. Mater. Chem. A 2019, 7, 24792.
- 14a) Y. Hu, Z. Zheng, Nano Energy 2019, 56, 16; b) H. Oh, S. S. Kwak, B. Kim, E. Han, G. H. Lim, S. W. Kim, B. Lim, Adv. Funct. Mater. 2019, 29, 1904066.
- 15X. Liu, A. Yu, A. Qin, J. Zhai, Adv. Mater. Technol. 2019, 4, 1900608.
- 16A. R. Mule, B. Dudem, H. Patnam, S. A. Graham, J. S. Yu, ACS Sustainable Chem. Eng. 2019, 7, 16450.
- 17M. M. Alam, S. Lee, M. Kim, K. S. Han, C. V. Anh, J. Nah, Nano Energy 2020, 104672.
- 18M. Kim, S. H. Kim, M. U. Park, C. Lee, M. Kim, Y. Yi, K.-H. Yoo, Nano Energy 2019, 65, 104079.
- 19Z. Li, M. Zhu, Q. Qiu, J. Yu, B. Ding, Nano Energy 2018, 53, 726.
- 20W. Wang, A. Yu, X. Liu, Y. Liu, Y. Zhang, Y. Zhu, Y. Lei, M. Jia, J. Zhai, Z. L. Wang, Nano Energy 2020, 71, 104605.
- 21a) Z. Ma, R. Xu, W. Wang, D. Yu, Colloids Surfaces A. 2019, 582, 123918; b) Z. Ma, W. Wang, D. Yu, J. Mater. Sci. 2019, 55, 796.
- 22a) M. Lou, I. Abdalla, M. Zhu, J. Yu, Z. Li, B. Ding, ACS Appl. Mater. Int. 2020, 12, 1597; b) J. Xiong, P. Cui, X. Chen, J. Wang, K. Parida, M. F. Lin, P. S. Lee, Nat. Commun. 2018, 9, 4280.
- 23M. Ma, Z. Zhang, Z. Zhao, Q. Liao, Z. Kang, F. Gao, X. Zhao, Y. Zhang, Nano Energy 2019, 66, 104105.
- 24R. Zhang, J. Liu, Y. Li, ACS Sens. 2019, 4, 2058.
- 25a) G. Liang, Z. Ruan, Z. Liu, H. Li, Z. Wang, Z. Tang, F. Mo, Q. Yang, L. Ma, D. Wang, C. Zhi, Adv. Elect. Mater. 2019, 5, 1900553; b) X. Xiao, X. Zhang, S. Wang, H. Ouyang, P. Chen, L. Song, H. Yuan, Y. Ji, P. Wang, Z. Li, M. Xu, Z. L. Wang, Adv. Energy Mater. 2019, 9, 1902460.
- 26a) L. Jin, B. Zhang, L. Zhang, W. Yang, Nano Energy 2019, 66, 104086; b) S. Wang, Y. Jiang, H. Tai, B. Liu, Z. Duan, Z. Yuan, H. Pan, G. Xie, X. Du, Y. Su, Nano Energy 2019, 63, 103829.
- 27H.-J. Qiu, W.-Z. Song, X.-X. Wang, J. Zhang, Z. Fan, M. Yu, S. Ramakrishna, Y.-Z. Long, Nano Energy 2019, 58, 536.
- 28M. Wang, W. Li, C. You, Q. Wang, X. Zeng, M. Chen, RSC Adv. 2017, 7, 6772.
- 29F. Peng, D. Liu, W. Zhao, G. Zheng, Y. Ji, K. Dai, L. Mi, D. Zhang, C. Liu, C. Shen, Nano Energy 2019, 65, 104068.
- 30S. Yan, J. Lu, W. Song, R. Xiao, Nano Energy 2018, 48, 248.
- 31R. Wang, S. Gao, Z. Yang, Y. Li, W. Chen, B. Wu, W. Wu, Adv. Mater. 2018, 30, 1706267.
- 32a) Z. H. Wang, W. Wang, D. Yu, Chem. Eng. J. 2017, 330, 146; b) S. Gong, D. T. Lai, Y. Wang, L. W. Yap, K. J. Si, Q. Shi, N. N. Jason, T. Sridhar, H. Uddin, W. Cheng, ACS Appl. Mater. Inter. 2015, 7, 19700; c) L. Lan, F. Zhao, Y. Yao, J. Ping, Y. Ying, ACS Appl. Mater. Inter. 2020, 12, 10689.
- 33a) K. Shi, H. Zou, B. Sun, P. Jiang, J. He, X. Huang, Adv. Funct. Mater. 2019, 30, 1904536; b) T. S. Dinh Le, J. An, Y. Huang, Q. Vo, J. Boonruangkan, T. Tran, S. W. Kim, G. Sun, Y. J. Kim, ACS Nano 2019, 13, 13293.
- 34D. Tantraviwat, P. Buarin, S. Suntalelat, W. Sripumkhai, P. Pattamang, G. Rujijanagul, B. Inceesungvorn, Nano Energy 2020, 67, 104214.
- 35a) W. Wu, Q. He, Y. Wu, Z. Feng, W. Fan, Z. Lin, C. Sun, Z. Zhou, K. Meng, J. Yang, J. Mater. Chem. A 2019, 7, 26804; b) M. Sala de Medeiros, D. Chanci, C. Moreno, D. Goswami, R. V. Martinez, Adv. Funct. Mater. 2019, 29, 1904350.
- 36B. Shi, Z. Liu, Q. Zheng, J. Meng, H. Ouyang, Y. Zou, D. Jiang, X. Qu, M. Yu, L. Zhao, Y. Fan, Z. L. Wang, Z. Li, ACS Nano 2019, 13, 6017.