Investigation into Properties of Carbohydrate Polymers Formed from Acid-Catalyzed Conversion of Sugar Monomers/Oligomers over Brønsted Acid Catalysts
Kai Sun
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorLijun Zhang
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorZhanming Zhang
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorYuewen Shao
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorYifan Sun
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorShu Zhang
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorQing Liu
College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590 P. R. China
Search for more papers by this authorYi Wang
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorGuangzhi Hu
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 P. R. China
Search for more papers by this authorCorresponding Author
Xun Hu
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorKai Sun
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorLijun Zhang
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorZhanming Zhang
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorYuewen Shao
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorYifan Sun
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorShu Zhang
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorQing Liu
College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590 P. R. China
Search for more papers by this authorYi Wang
State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 P. R. China
Search for more papers by this authorGuangzhi Hu
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 P. R. China
Search for more papers by this authorCorresponding Author
Xun Hu
School of Materials Science and Engineering, University of Jinan, Jinan, 250022 P. R. China
Search for more papers by this authorAbstract
Steric hindrance is an intrinsic issue for solid acid catalysts in catalyzing conversion of sugars with a certain size. Herein, the conversion of furfural and sugar monomers/oligomers over a heterogeneous catalyst (D008) and homogeneous acid (H2SO4) is conducted in aqueous medium. The results indicate the steric hindrance of D008 shows more significant effects on the conversion of the sugars than that of furfural, as the chain form of the sugar monomers/oligomers is much bigger than that of furfural in size. The high local concentration of hydrogen ions on D008 facilitates furfural polymerization via opening of the furan ring through hydration reactions. The deactivation of D008 is responsible for the low yield of volatile products when the polymer formed from the polymerization of the sugars fills the pores. The sugar structures determine the polymer's properties. Thermal stability of the coke derived from the sugar oligomers is lower than that from the sugar monomers due to more aliphatic structures in the resulting coke. In addition, the coke derived from the sugars is more hydrophilic than that from furfural, due to the multiple hydroxyl group in the sugar substrates.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201901476-sup-0001-SuppData-S1.docx3.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Shrotri, L. K. Lambert, A. Tanksale, J. Beltramini, Green Chem. 2013, 15, 2761.
- 2W. Deng, K. Xu, Z. Xiong, W. Chaiwat, X. Wang, S. Su, S. Hu, J. Qiu, Y. Wang, J. Xiang, Energy Fuels 2019, 33, 11292.
- 3R. Gunawan, X. Li, A. Larcher, X. Hu, D. Mourant, W. Chaiwat, H. Wu, C.-Z. Li, Fuel 2012, 95, 146.
- 4A. T. To, P. W. Chung, A. Katz, Angew. Chem. Int. Ed. 2015, 54, 11050.
- 5L. Hu, L. Lin, Z. Wu, S. Zhou, S. Liu, Appl. Catal. B Environ. 2015, 174, 225.
- 6P. Wu, J. Li, T. He, C. Hu, BioResources 2019, 14, 816.
- 7X. Hu, S. Jiang, L. Wu, S. Wang, C.-Z. Li, Chem. Commun. 2017, 53, 2938.
- 8Y. Shao, K. Sun, L. Zhang, Q. Xu, Z. Zhang, Q. Li, S. Zhang, Y. Wang, Q. Liu, X. Hu, Green Chem. 2019, 21, 6634.
- 9W. Wang, A. Mittal, H. Pilath, X. Chen, M. P. Tucker, D. K. Johnson, Biotechnol. Biofuels 2019, 12, 1.
- 10A. H. Motagamwala, K. Huang, C. T. Maravelias, J. A. Dumesic, Energy Environ. Sci. 2019, 12, 2212.
- 11I. Tosi, A. Riisager, E. Taarning, P. R. Jensen, S. Meier, Catal. Sci. Technol. 2018, 8, 2137.
- 12X. Cao, X. Peng, S. Sun, L. Zhong, W. Chen, S. Wang, R. C. Sun, Carbohydr. Polym. 2015, 118, 44.
- 13J. X. Wang, J. P. Cao, X. Y. Zhao, S. N. Liu, X. Y. Ren, M. Zhao, X. Cui, Q. Chen, X. Y. Wei, Bioresour. Technol. 2019, 278, 116.
- 14J. Wang, J. Xi, Y. Wang, Green Chem. 2015, 17, 737.
- 15J. X. Wang, J. P. Cao, X. Y. Zhao, S. N. Liu, X. Y. Ren, L. J. Zhang, X. B. Feng, Y. P. Zhao, X. Y. Wei, Ind. Eng. Chem. Res. 2019, 58, 22193.
- 16Y. Zhang, X. Chen, X. Lyu, G. Zhao, T. Zhao, L. Han, W. Xiao, J. Clean. Prod. 2019, 215, 712.
- 17Y. Chen, X. Chen, T. L. Guo, P. Zhou, Food Res. Int. 2015, 69, 106.
- 18X. Hu, L. Wu, Y. Wang, Y. Song, D. Mourant, R. Gunawan, M. Gholizadeh, C.-Z. Li, Bioresour. Technol. 2013, 133, 469.
- 19C. Ming, K. Sun, Y. Shao, Z. Zhang, S. Zhang, Q. Liu, Y. Wang, S. Hu, J. Xiang, X. Hu, Energy Fuels 2019, 33, 11187.
- 20L. Wu, X. Hu, S. Wang, M. M. Hasan, S. Jiang, T. Li, C.-Z. Li, Fuel 2018, 212, 412.
- 21X. Hu, S. Wang, R. J. Westerhof, L. Wu, Y. Song, D. Dong, C.-Z. Li, Fuel 2015, 141, 56.
- 22T. Honma, H Inomata, J. Supercrit. Fluids 2014, 90, 1.
- 23X. Hu, L. Wu, Y. Wang, D. Mourant, C. Lievens, R. Gunawan, C.-Z. Li, Green Chem. 2012, 14, 3087.
- 24Y. Li, H. Liu, C. Song, X. Gu, H. Li, W. Zhu, S. Yin, C. Han, Bioresour. Technol. 2013, 133, 347.
- 25K. Sun, Q. Xu, Y. Shao, L. Zhang, Q. Liu, S. Zhang, Y. Wang, X. Hu, Energy Fuels 2019, 33, 7480.
- 26Q. Xu, X. Hu, Y. Shao, K. Sun, P. Jia, L. Zhang, Q. Liu, Y. Wang, S. Hu, J. Xiang, Carbohydr. Polym. 2019, 216, 167.
- 27K. Sun, L. Zhang, Y. Shao, Q. Li, H. Fan, G. Gao, S. Zhang, Q. Liu, Y. Wang, X. Hu, J. Chem. Technol. Biotechnol. 2019, 94, 3676.
- 28H. Li, X. Kong, Z. Fang, R. L. Smith, Production of Biofuels and Chemicals with Bifunctional Catalysts (Eds: Z. Fang, R. Smith, H. Li), Springer, Singapore 2017, pp. 3–30.
10.1007/978-981-10-5137-1_1 Google Scholar
- 29X. Hu, S. Kadarwati, Y. Song, C.-Z. Li, RSC Adv. 2016, 6, 4647.
- 30J. Feng, L. Zhang, J. Jiang, C. Hse, T. F. Shupe, H. Pan, Green Chem. 2019, 21, 4951.
- 31H. Lin, Q. Xiong, Y. Zhao, J. Chen, S. Wang, AIChE J. 2017, 63, 257.
- 32X. Hu, K. Nango, L. Bao, T. Li, M. M. Hasan, C.-Z. Li, Green Chem. 2019, 21, 1128.
- 33W. Li, Y. Zhu, Y. Lu, Q. Liu, S. Guan, H. M. Chang, H. Jameel, L. Ma, Bioresour. Technol. 2017, 245, 258.
- 34S. Elumalai, B. Agarwal, T. M. Runge, R. S. Sangwan, Carbohydr. Polym. 2016, 150, 286.
- 35X. Hu, C. Lievens, D. Mourant, Y. Wang, L. Wu, R. Gunawan, Y. Song, C.-Z. Li, Appl. Energy 2013, 111, 94.
- 36X. Hu, S. Wang, L. Wu, D. Dong, M. M. Hasan, C.-Z. Li, Fuel Process. Technol. 2014, 126, 315.
- 37Z. Zhang, X. Zhang, L. Zhang, Y. Wang, X. Li, S. Zhang, Q. Liu, T. Wei, G. Gao, X. Hu, Energy Convers. Manage. 2020, 205, 112301.
- 38M. Benghia, M. Benalia, M. Djedid, C. Ad, A. Boudaoud, H. Elmsellem, A. H. Al-dujaili, Moroccan J. Chem. 2018, 6, 6.
- 39C. Chen, X. Sun, X. Jiang, D. Niu, Z. A. Yu, J. L. Liu, Nanoscale Res. Lett. 2009, 4, 971.