Factors of Kinetics Processes in Lithium–Sulfur Reactions
Xiaonan Tang
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
Search for more papers by this authorZichen Xu
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Search for more papers by this authorZhenhua Sun
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016 China
Search for more papers by this authorJin Zhou
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Search for more papers by this authorXiaozhong Wu
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Search for more papers by this authorHongtao Lin
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Search for more papers by this authorJunfeng Rong
Research Institute of Petroleum Processing, Sinopec, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Shuping Zhuo
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Search for more papers by this authorCorresponding Author
Feng Li
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016 China
Search for more papers by this authorXiaonan Tang
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
Search for more papers by this authorZichen Xu
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Search for more papers by this authorZhenhua Sun
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016 China
Search for more papers by this authorJin Zhou
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Search for more papers by this authorXiaozhong Wu
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Search for more papers by this authorHongtao Lin
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Search for more papers by this authorJunfeng Rong
Research Institute of Petroleum Processing, Sinopec, Beijing, 100083 China
Search for more papers by this authorCorresponding Author
Shuping Zhuo
School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 China
Search for more papers by this authorCorresponding Author
Feng Li
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 China
School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016 China
Search for more papers by this authorAbstract
Lithium–Sulfur (Li–S) batteries are among the most promising next-generation secondary battery technologies due to their high theoretical energy density. However, the Li–S reaction is a multistep process and a solid–liquid–solid phase transition process, relating to complex reaction kinetics. Moreover, the poor conductivity of sulfur hinders effective electron transport, and large volume expansion leads to electrode pulverization, causing the electrode to lose effective electrical contact, which decreases the kinetics. In this review, the factors influencing kinetics processes in Li–S electrochemistry are reviewed, starting from the design of sulfur host materials, along with electrode structure. Then, the cell design including electrolyte, interlayer, etc., is discussed further. Finally, insights on how to improve the kinetics are provided, which is expected to provide direction for further kinetic investigation of Li–S batteries.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1R. Cao, W. Xu, D. Lv, J. Xiao, J.-G. Zhang, Adv. Energy Mater. 2015, 5, 1402273.
- 2J.-Q. Huang, M. Zhao, R. Xu, Q. Zhang, Flexible Energy Convers. Storage Devices 2018, 155.
- 3L. Carbone, J. Peng, M. Agostini, M. Gobet, M. Devany, B. Scrosati, S. Greenbaum, J. Hassoun, ChemElectroChem 2017, 4, 209.
- 4X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
- 5Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, Y. Liu, J. Electrochem. Soc. 2013, 160, A553.
- 6X. Tang, Z. Sun, J. Liang, J. Zhao, H.-M. Cheng, S. Zhuo, F. Li, J. Mater. Chem. A 2017, 5, 22459.
- 7J. Yan, X. Liu, B. Li, Adv. Sci. 2016, 3, 1600101.
- 8Z. W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 2016, 45, 5605.
- 9M. Wild, L. O'Neill, T. Zhang, R. Purkayastha, G. Minton, M. Marinescu, G. J. Offer, Energy Environ. Sci. 2015, 8, 3477.
- 10G. Zhou, S. Pei, L. Li, D. W. Wang, S. Wang, K. Huang, L. C. Yin, F. Li, H. M. Cheng, Adv. Mater. 2014, 26, 625.
- 11S. S. Zhang, D. T. Tran, J. Power Sources 2012, 211, 169.
- 12D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I. R. Gentle, G. Q. M. Lu, J. Mater. Chem. A 2013, 1, 9382.
- 13M. Barghamadi, A. Kapoor, C. Wen, J. Electrochem. Soc. 2013, 160, A1256.
- 14K. Kumaresan, Y. Mikhaylik, R. E. White, J. Electrochem. Soc. 2008, 155, A576.
- 15D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling, L. Zhi, Q. H. Yang, Adv. Sci. 2018, 5, 1700270.
- 16T. Zhang, M. Marinescu, S. Walus, P. Kovacik, G. J. Offer, J. Electrochem. Soc. 2017, 165, A6001.
- 17Z. Liu, P. P. Mukherjee, ACS Appl. Mater. Interfaces 2017, 9, 5263.
- 18F. Y. Fan, W. C. Carter, Y. M. Chiang, Adv. Mater. 2015, 27, 5203.
- 19H. Al Salem, G. Babu, C. V. Rao, L. M. Arava, J. Am. Chem. Soc. 2015, 137, 11542.
- 20H.-J. Peng, W.-T. Xu, L. Zhu, D.-W. Wang, J.-Q. Huang, X.-B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Adv. Funct. Mater. 2016, 26, 6351.
- 21G. Xu, J. Yuan, X. Geng, H. Dou, L. Chen, X. Yan, H. Zhu, Chem. Eng. J. 2017, 322, 454.
- 22A. Konarov, Z. Bakenov, H. Yashiro, Y.-K. Sun, S.-T. Myung, J. Power Sources 2017, 355, 140.
- 23H. Wu, Y. Deng, J. Mou, Q. Zheng, F. Xie, E. Long, C. Xu, D. Lin, Electrochim. Acta 2017, 242, 146.
- 24Z. Zhang, Z. Li, F. Hao, X. Wang, Q. Li, Y. Qi, R. Fan, L. Yin, Adv. Funct. Mater. 2014, 24, 2500.
- 25S.-Z. Zeng, Y. Yao, X. Zeng, Q. He, X. Zheng, S. Chen, W. Tu, J. Zou, J. Power Sources 2017, 357, 11.
- 26S. Choudhury, B. Krüner, P. Massuti-Ballester, A. Tolosa, C. Prehal, I. Grobelsek, O. Paris, L. Borchardt, V. Presser, J. Power Sources 2017, 357, 198.
- 27J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng, Energy Storage Mater. 2015, 2, 76.
- 28X. Fang, H. Peng, Small 2015, 11, 1488.
- 29G. Ai, Y. Dai, W. Mao, H. Zhao, Y. Fu, X. Song, Y. En, V. S. Battaglia, V. Srinivasan, G. Liu, Nano Lett. 2016, 16, 5365.
- 30C. Wang, K. Su, W. Wan, H. Guo, H. Zhou, J. Chen, X. Zhang, Y. Huang, J. Mater. Chem. A 2014, 2, 5018.
- 31M. Q. Zhao, Q. Zhang, J. Q. Huang, G. L. Tian, J. Q. Nie, H. J. Peng, F. Wei, Nat. Commun. 2014, 5, 3410.
- 32K. Xi, P. R. Kidambi, R. Chen, C. Gao, X. Peng, C. Ducati, S. Hofmann, R. V. Kumar, Nanoscale 2014, 6, 5746.
- 33H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 2011, 11, 2644.
- 34S. Lu, Y. Cheng, X. Wu, J. Liu, Nano Lett. 2013, 13, 2485.
- 35M.-Q. Zhao, X.-F. Liu, Q. Zhang, G.-L. Tian, J.-Q. Huang, W. Zhu, F. Wei, ACS Nano 2012, 6, 10759.
- 36R. Chen, T. Zhao, J. Lu, F. Wu, L. Li, J. Chen, G. Tan, Y. Ye, K. Amine, Nano Lett. 2013, 13, 4642.
- 37Z. Cheng, H. Pan, H. Zhong, Z. Xiao, X. Li, R. Wang, Adv. Funct. Mater. 2018, 28, 1707597.
- 38Z.-W. Zhang, H.-J. Peng, M. Zhao, J.-Q. Huang, Adv. Funct. Mater. 2018, 28, 1707536.
- 39Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, S. Yang, W. Duan, Y. Ye, J. Guo, Y. Zhang, Nano Lett. 2014, 14, 4821.
- 40J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M. H. Engelhard, J. G. Zhang, J. Liu, J. Xiao, Nano Lett. 2014, 14, 2345.
- 41K. Xie, Y. You, K. Yuan, W. Lu, K. Zhang, F. Xu, M. Ye, S. Ke, C. Shen, X. Zeng, X. Fan, B. Wei, Adv. Mater. 2017, 29.
- 42X. Y. Yu, X. W. David Lou, Adv. Energy Mater. 2018, 8, 1701592.
- 43T.-Z. Hou, H.-J. Peng, J.-Q. Huang, Q. Zhang, B. Li, 2D Mater. 2015, 2, 014011.
- 44K. Chen, Z. Sun, R. Fang, Y. Shi, H.-M. Cheng, F. Li, Adv. Funct. Mater. 2018, 28, 1707592.
- 45L.-C. Yin, J. Liang, G.-M. Zhou, F. Li, R. Saito, H.-M. Cheng, Nano Energy 2016, 25, 203.
- 46M. Yu, R. Li, M. Wu, G. Shi, Energy Storage Mater. 2015, 1, 51.
- 47C. P. Yang, Y. X. Yin, H. Ye, K. C. Jiang, J. Zhang, Y. G. Guo, ACS Appl. Mater. Interfaces 2014, 6, 8789.
- 48L.-B. Xing, K. Xi, Q. Li, Z. Su, C. Lai, X. Zhao, R. V. Kumar, J. Power Sources 2016, 303, 22.
- 49Q. Pang, J. Tang, H. Huang, X. Liang, C. Hart, K. C. Tam, L. F. Nazar, Adv. Mater. 2015, 27, 6021.
- 50G. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Nat. Commun. 2015, 6, 7760.
- 51Q. Pang, D. Kundu, M. Cuisinier, L. F. Nazar, Nat. Commun. 2014, 5, 4759.
- 52H.-J. Peng, G. Zhang, X. Chen, Z.-W. Zhang, W.-T. Xu, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2016, 55, 12990.
- 53X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nat. Commun. 2015, 6, 5682.
- 54X. Liang, C. Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C. J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek, L. F. Nazar, Adv. Energy Mater. 2016, 6, 1501636.
- 55H. Yao, G. Zheng, P.-C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, Z. Liang, V. K. Narasimhan, Y. Cui, Nat. Commun. 2014, 5.
- 56H.-J. Peng, Q. Zhang, Angew. Chem. Int. Ed. 2015, 54, 11018.
- 57Z. W. Seh, J. H. Yu, W. Li, P. C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Nat. Commun. 2014, 5, 5017.
- 58R. Fang, S. Zhao, Z. Sun, D.-W. Wang, R. Amal, S. Wang, H.-M. Cheng, F. Li, Energy Storage Mater. 2018, 10, 56.
- 59L. Kong, X. Chen, B. Q. Li, H. J. Peng, J. Q. Huang, J. Xie, Q. Zhang, Adv. Mater. 2018, 30.
- 60Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H. M. Cheng, F. Li, Nat. Commun. 2017, 8, 14627.
- 61Y.-C. Lu, Q. He, H. A. Gasteiger, J. Phys. Chem. C 2014, 118, 5733.
- 62T.-G. Jeong, D. S. Choi, H. Song, J. Choi, S.-A. Park, S. H. Oh, H. Kim, Y. Jung, Y.-T. Kim, ACS Energy Lett. 2017, 2, 327.
- 63R. Pongilat, K. Nallathamby, ACS Appl. Mater. Interfaces 2018, 10, 38853.
- 64B.-Q. Li, H.-J. Peng, X. Chen, S.-Y. Zhang, J. Xie, C.-X. Zhao, Q. Zhang, CCS Chem. 2019, 128.
10.31635/ccschem.019.20180016 Google Scholar
- 65T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao, S. Fan, B. Liu, B. Li, F. Kang, Q. H. Yang, Energy Environ. Sci. 2017, 10, 1694.
- 66Y. Zhong, L. Yin, P. He, W. Liu, Z. Wu, H. Wang, J. Am. Chem. Soc. 2018, 140, 1455.
- 67M. Yu, S. Zhou, Z. Wang, Y. Wang, N. Zhang, S. Wang, J. Zhao, J. Qiu, Energy Storage Mater. 2019, 20, 98.
- 68Z. Liu, L. Zhou, Q. Ge, R. Chen, M. Ni, W. Utetiwabo, X. Zhang, W. Yang, ACS Appl. Mater. Interfaces 2018, 10, 19311.
- 69B.-W. Zhang, T. Sheng, Y.-D. Liu, Y.-X. Wang, L. Zhang, W.-H. Lai, L. Wang, J. Yang, Q.-F. Gu, S.-L. Chou, H.-K. Liu, S.-X. Dou, Nat. Commun. 2018, 9, 4082.
- 70A. N. Mistry, P. P. Mukherjee, J. Phys. Chem. C 2018, 122, 18329.
- 71D. Lu, Q. Li, J. Liu, J. Zheng, Y. Wang, S. Ferrara, J. Xiao, J.-G. Zhang, J. Liu, ACS Appl. Mater. Interfaces 2018, 10, 23094.
- 72C.-F. Chen, A. Mistry, P. P. Mukherjee, J. Phys. Chem. C 2017, 121, 21206.
- 73G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch, L. F. Nazar, ACS Nano 2013, 7, 10920.
- 74Y. Yin, A. A. Franco, ACS Appl. Energy Mater. 2018, 1, 5816.
- 75D. Lu, Q. Li, J. Liu, J. Zheng, Y. Wang, S. Ferrara, J. Xiao, J.-G. Zhang, J. Liu, ACS Appl. Mater. Interfaces 2018, 10, 23094.
- 76D. W. Wang, G. Zhou, F. Li, K. H. Wu, G. Q. Lu, H. M. Cheng, I. R. Gentle, Phys. Chem. Chem. Phys. 2012, 14, 8703.
- 77X. Tang, Z.-h. Sun, S. Zhuo, F. Li, New Carbon Mater. 2017, 32, 535.
- 78J. Newman, W. Tiedemann, AlChE J. 1975, 21, 25.
- 79A. Manthiram, S. H. Chung, C. Zu, Adv. Mater. 2015, 27, 1980.
- 80H. M. Cheng, F. Li, Science 2017, 356, 582.
- 81Z. Yuan, H.-J. Peng, J.-Q. Huang, X.-Y. Liu, D.-W. Wang, X.-B. Cheng, Q. Zhang, Adv. Funct. Mater. 2014, 24, 6105.
- 82L. Zhu, W. Zhu, X.-B. Cheng, J.-Q. Huang, H.-J. Peng, S.-H. Yang, Q. Zhang, Carbon 2014, 75, 161.
- 83L. Qie, A. Manthiram, Adv. Mater. 2015, 27, 1694.
- 84X. Tang, Z. Sun, H. Yang, H. Fang, F. Wei, H.-M. Cheng, S. Zhuo, F. Li, J. Energy Chem. 2019, 31, 119.
- 85S. S. Zhang, J. Power Sources 2013, 231, 153.
- 86R. Dominko, A. Vizintin, G. Aquilanti, L. Stievano, M. J. Helen, A. R. Munnangi, M. Fichtner, I. Arcon, J. Electrochem. Soc. 2017, 165, A5014.
- 87F. Y. Fan, M. S. Pan, K. C. Lau, R. S. Assary, W. H. Woodford, L. A. Curtiss, W. C. Carter, Y.-M. Chiang, J. Electrochem. Soc. 2016, 163, A3111.
- 88N. Azimi, W. Weng, C. Takoudis, Z. Zhang, Electrochem. Commun. 2013, 37, 96.
- 89G. Zhang, H. J. Peng, C. Z. Zhao, X. Chen, L. D. Zhao, P. Li, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 16732.
- 90Q. Cheng, W. Xu, S. Qin, S. Das, T. Jin, A. Li, A. C. Li, B. Qie, P. Yao, H. Zhai, C. Shi, X. Yong, Y. Yang, Angew. Chem. Int. Ed. 2019, 58, 5557.
- 91Q. Pang, A. Shyamsunder, B. Narayanan, C. Y. Kwok, L. A. Curtiss, L. F. Nazar, Nat. Energy 2018, 3, 783.
- 92R. Fang, S. Zhao, Z. Sun, D. W. Wang, H. M. Cheng, F. Li, Adv. Mater. 2017, 29, 1606823.
- 93S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Adv. Energy Mater. 2015, 5, 1500117.
- 94S. S. Zhang, J. Power Sources 2016, 322, 99.
- 95S. Y. Lang, R. J. Xiao, L. Gu, Y. G. Guo, R. Wen, L. J. Wan, J. Am. Chem. Soc. 2018, 140, 8147.
- 96C. Cavallo, M. Agostini, J. P. Genders, M. E. Abdelhamid, A. Matic, J. Power Sources 2019, 416, 111.
- 97N. Li, Z. Weng, Y. Wang, F. Li, H.-M. Cheng, H. Zhou, Energy Environ. Sci. 2014, 7, 3307.
- 98R. D. Rauh, K. M. Abraham, G. F. Pearson, J. K. Surprenant, S. B. Brummer, J. Electrochem. Soc. 1979, 126, 523.
- 99D. H. Lim, M. Agostini, F. Nitze, J. Manuel, J. H. Ahn, A. Matic, Sci. Rep. 2017, 7, 1.
- 100A. Manthiram, S. H. Chung, C. Zu, Adv. Mater. 2015, 27, 1980.
- 101R. Fang, S. Zhao, P. Hou, M. Cheng, S. Wang, H. M. Cheng, C. Liu, F. Li, Adv. Mater. 2016, 28, 3374.
- 102S. Li, J. Warzywoda, S. Wang, G. Ren, Z. Fan, Carbon 2017, 124, 212.
- 103Y. S. Su, A. Manthiram, Nature Commun. 2012, 3, 1166.
- 104J.-Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 2015, 1, 127.
- 105L. Kong, Q. Jin, X.-T. Zhang, B.-Q. Li, J.-X. Chen, W.-C. Zhu, J.-Q. Huang, Q. Zhang, J. Energy Chem. 2019, 39, 17.
- 106F. Li, M. R. Kaiser, J. Ma, Z. Guo, H. Liu, J. Wang, Energy Storage Mater. 2018, 13, 312.
- 107H. J. Peng, D. W. Wang, J. Q. Huang, X. B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Adv. Sci. 2016, 3, 1500268.
- 108F. Qin, K. Zhang, J. Fang, Y. Lai, Q. Li, Z. Zhang, J. Li, New J. Chem. 2014, 38, 4549.
- 109A. Wang, G. Xu, B. Ding, Z. Chang, Y. Wang, H. Dou, X. Zhang, ChemElectroChem 2017, 4, 362.
- 110J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian, F. Wei, Energy Environ. Sci. 2014, 7, 347.
- 111L. Kong, B.-Q. Li, H.-J. Peng, R. Zhang, J. Xie, J.-Q. Huang, Q. Zhang, Adv. Energy. Mater. 2018, 8, 1800849.
- 112H. Li, L. Sun, Y. Zhang, T. Tan, G. Wang, Z. Bakenov, J. Energy Chem. 2017, 26, 1276.
- 113J. Zhu, C. Chen, Y. Lu, J. Zang, M. Jiang, D. Kim, X. Zhang, Carbon 2016, 101, 272.
- 114H. Tang, S. Yao, X. Shen, X. Xi, K. Xiao, Energy Technol. 2017, 5, 623.
- 115Z. Lin, Z. Liu, W. Fu, N. J. Dudney, C. Liang, Adv. Funct. Mater. 2013, 23, 1064.
- 116C. Huang, J. Xiao, Y. Shao, J. Zheng, W. D. Bennett, D. Lu, L. V. Saraf, M. Engelhard, L. Ji, J. Zhang, X. Li, G. L. Graff, J. Liu, Nat. Commun. 2014, 5, 3015.
- 117H. Pan, K. S. Han, M. H. Engelhard, R. Cao, J. Chen, J.-G. Zhang, K. T. Mueller, Y. Shao, J. Liu, Adv. Funct. Mater. 2018, 28, 1707234.
- 118X.-B. Cheng, C. Yan, J.-Q. Huang, P. Li, L. Zhu, L. Zhao, Y. Zhang, W. Zhu, S.-T. Yang, Q. Zhang, Energy Storage Mater. 2017, 6, 18.