Polar and Nonpolar Matrix Consisting of Twined Multiwalled Carbon Nanotube and High Nitrogen-Doped Porous Carbon Derived from Ionic Liquid for Stable Li-S Battery
Zhijin Wang
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan, China
Search for more papers by this authorJuanjuan Cheng
Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, 411201 Hunan, China
Search for more papers by this authorCorresponding Author
Hongjia Song
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan, China
Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan, 411105 Hunan, China
Search for more papers by this authorDan Xue
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan, China
Search for more papers by this authorXiangli Zhong
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan, China
Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan, 411105 Hunan, China
Search for more papers by this authorJinbin Wang
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan, China
Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan, 411105 Hunan, China
Search for more papers by this authorZhijin Wang
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan, China
Search for more papers by this authorJuanjuan Cheng
Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan, 411201 Hunan, China
Search for more papers by this authorCorresponding Author
Hongjia Song
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan, China
Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan, 411105 Hunan, China
Search for more papers by this authorDan Xue
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan, China
Search for more papers by this authorXiangli Zhong
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan, China
Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan, 411105 Hunan, China
Search for more papers by this authorJinbin Wang
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 Hunan, China
Key Laboratory of Low-dimensional Materials and Application Technology, Xiangtan University, Xiangtan, 411105 Hunan, China
Search for more papers by this authorAbstract
Lithium–sulfur batteries are recognized as high energy density systems. However, due to the reproducibility of nonpolar S8, polar polysulfide intermediates and the final Li2S during cycling, developing an effective matrix to reduce sulfur consumption in the cathode and improve the cycle stability is still challenging. Herein, a polar and nonpolar matrix consisting of twined multiwalled carbon nanotube (MWCNT) and high nitrogen-doped porous carbon is designed, in which the twined MWCNT could provide the nonpolar and physical bind, meanwhile, the N-enriched porous carbon derived from ionic liquid could provide polar and chemical anchoring. The composite is prepared by carbonizing the 1-ethyl-3-methylimidazolium dicyanamide (Emim-dca) ionic liquid, which is loaded on the intertwined MWCNT. The ionic-liquid-derived composite material shows more microporous and low-diameter mesoporous structures than intertwined MWCNT, and the nitrogen content reaches 7.42 At%. Assembled in lithium–sulfur batteries, the specific capacity of the battery reaches 1558.6 mAh g−1 at the first cycle of 0.1 C. After the 300 times cycling at 1 C, the specific capacity still remains 614.34 mAh g−1 and the attenuation is only 0.021% for each cycle. Moreover, the attenuation in the changing rate charge–discharge test is weaker than the pure intertwined MWCNT composite cathode.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900470-sup-0001-SuppData-S1.docx125.3 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Manthiram, S. H. Chung, C. Zu, Adv. Mater. 2015, 27, 1980.
- 2R. Fang, S. Zhao, Z. Sun, D. W. Wang, H. M. Cheng, F. Li, Adv. Mater. 2017, 29, 1606823.
- 3H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260.
- 4M. Safari, C. Y. Kwok, L. F. Nazar, ACS Cent. Sci. 2016, 2, 560.
- 5D. Zheng, X. Zhang, J. Wang, D. Qu, X. Yang, D. Qu, J. Power Sources 2016, 301, 312.
- 6M. Vijayakumar, N. Govind, E. Walter, S. D. Burton, A. Shukla, A. Devaraj, J. Xiao, J. Liu, C. Wang, A. Karim, S. Thevuthasan, Phys. Chem. Chem. Phys. 2014, 16, 10923.
- 7H. Shi, W. Lv, C. Zhang, D.-W. Wang, G. Ling, Y. He, F. Kang, Q.-H. Yang, Adv. Funct. Mater. 2018, 28, 1800508.
- 8L. Zhang, Y. Wang, Z. Niu, J. Chen, Carbon 2019, 141, 400.
- 9G. Li, S. Wang, Y. Zhang, M. Li, Z. Chen, J. Lu, Adv. Mater. 2018, 30, e1705590.
- 10E. P. Kamphaus, P. B. Balbuena, J. Phys. Chem. C 2017, 121, 21105.
- 11J.-Y. Hwang, H. M. Kim, S.-K. Lee, J.-H. Lee, A. Abouimrane, M. A. Khaleel, I. Belharouak, A. Manthiram, Y.-K. Sun, Adv. Energy Mater. 2016, 6, 1502313.
- 12M. Liu, Q. Li, X. Qin, G. Liang, W. Han, D. Zhou, Y. B. He, B. Li, F. Kang, Small 2017, 13, 1602539.
- 13Y. Lu, S. Gu, J. Guo, K. Rui, C. Chen, S. Zhang, J. Jin, J. Yang, Z. Wen, ACS Appl. Mater. Interfaces 2017, 9, 14878.
- 14C. W. Lee, Q. Pang, S. Ha, L. Cheng, S. D. Han, K. R. Zavadil, K. G. Gallagher, L. F. Nazar, M. Balasubramanian, ACS Cent. Sci. 2017, 3, 605.
- 15W. Chen, T. Lei, C. Wu, M. Deng, C. Gong, K. Hu, Y. Ma, L. Dai, W. Lv, W. He, X. Liu, J. Xiong, C. Yan, Adv. Energy Mater. 2018, 8, 1702019.
- 16Q. Pang, A. Shyamsunder, B. Narayanan, C. Y. Kwok, L. A. Curtiss, L. F. Nazar, Nat. Energy 2018, 3, 783.
- 17X.-B. Cheng, J.-Q. Huang, Q. Zhang, J. Electrochem. Soc. 2017, 165, A6058.
- 18T. Tao, S. Lu, Y. Fan, W. Lei, S. Huang, Y. Chen, Adv. Mater. 2017, 29, 1700542.
- 19L. L. Kong, L. Wang, Z. C. Ni, S. Liu, G. R. Li, X. P. Gao, Adv. Funct. Mater. 2019, 29, 1808756.
- 20Z.-L. Xu, J.-K. Kim, K. Kang, Nano Today 2018, 19, 84.
- 21S. Huang, R. Guan, S. Wang, M. Xiao, D. Han, L. Sun, Y. Meng, Prog. Polym. Sci. 2019, 89, 19.
- 22J. He, L. Luo, Y. Chen, A. Manthiram, Adv. Mater. 2017, 29, 1702707.
- 23Y. Zhong, D. Chao, S. Deng, J. Zhan, R. Fang, Y. Xia, Y. Wang, X. Wang, X. Xia, J. Tu, Adv. Funct. Mater. 2018, 28, 1706391.
- 24J. Xu, T. Lawson, H. Fan, D. Su, G. Wang, Adv. Energy Mater. 2018, 8, 1702019.
- 25H. Yang, X. Zhang, J. Guo, W. Zhu, S. Zhao, F. Wang, Q. Fan, H. Xiao, F. Zhang, J. Alloys Compd. 2018, 768, 495.
- 26H. Wu, L. Xia, J. Ren, Q. Zheng, C. Xu, D. Lin, J. Mater. Chem. A 2017, 5, 20458.
- 27Y. Zheng, S. Zheng, H. Xue, H. Pang, J. Mater. Chem. A 2019, 7, 3469.
- 28G. Li, H. Jing, H. Li, L. Liu, Y. Wang, C. Yuan, H. Jiang, L. Chen, Ionics 2015, 21, 2161.
- 29K. Yang, Q. Gao, Y. Tan, W. Tian, W. Qian, L. Zhu, C. Yang, Chemistry 2016, 22, 3239.
- 30Y. Liu, M. Cheng, X. Guo, Z. Wu, Y. Chen, W. Xiang, J. Li, B. Zhong, Ionics 2017, 23, 2951.
- 31G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z. W. Seh, D. Zhuo, Y. Liu, J. Sun, J. Zhao, C. Zu, D. S. Wu, Q. Zhang, Y. Cui, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 840.
- 32L. Borchardt, M. Oschatz, S. Kaskel, Chemistry 2016, 22, 7324.
- 33J. Xiao, Adv. Energy Mater. 2015, 5, 1501102.
- 34X. Zhang, Z. Zhang, Z. Zhou, J. Energy Chem. 2018, 27, 73.
- 35H. Lin, D.-D. Yang, N. Lou, S.-G. Zhu, H.-Z. Li, Ceram. Int. 2019, 45, 1588.
- 36S. Li, T. Mou, G. Ren, J. Warzywoda, B. Wang, Z. Fan, ACS Energy Lett. 2016, 1, 481.
- 37D. Su, M. Cortie, G. Wang, Adv. Energy Mater. 2017, 7, 1602014.
- 38S. Niu, W. Lv, C. Zhang, F. Li, L. Tang, Y. He, B. Li, Q.-H. Yang, F. Kang, J. Mater. Chem. A 2015, 3, 20218.
- 39F. Pei, T. An, J. Zang, X. Zhao, X. Fang, M. Zheng, Q. Dong, N. Zheng, Adv. Energy Mater. 2016, 6, 1502539.
- 40Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H. M. Cheng, F. Li, Nat. Commun. 2017, 8, 14627.
- 41J. P. Paraknowitsch, J. Zhang, D. Su, A. Thomas, M. Antonietti, Adv. Mater. 2010, 22, 87.
- 42X. Wang, S. Dai, Angew. Chem., Int. Ed. Engl. 2010, 49, 6664.
- 43B. Qiu, C. Pan, W. Qian, Y. Peng, L. Qiu, F. Yan, J. Mater. Chem. A 2013, 1, 6373.
- 44A. Schneider, C. Weidmann, C. Suchomski, H. Sommer, J. Janek, T. Brezesinski, Chem. Mater. 2015, 27, 1674.
- 45J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. 2012, 51, 11496.
- 46Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, S. Yang, W. Duan, Y. Ye, J. Guo, Y. Zhang, Nano Lett. 2014, 14, 4821.
- 47N. Fechler, T. P. Fellinger, M. Antonietti, Adv. Mater. 2013, 25, 75.
- 48A. Chen, Y. Yu, H. Lv, Y. Wang, S. Shen, Y. Hu, B. Li, Y. Zhang, J. Zhang, J. Mater. Chem. A 2013, 1, 1045.
- 49T. P. Fellinger, A. Thomas, J. Yuan, M. Antonietti, Adv. Mater. 2013, 25, 5838.
- 50S. Zhang, K. Dokko, M. Watanabe, Mater. Horiz. 2015, 2, 168.
- 51M. Kruk, M. Jaroniec, Chem. Mater. 2001, 13, 3169.
- 52L. Chen, H. Zhou, C. Fu, Z. Chen, C. Xu, Y. Kuang, Int. J. Hydrogen Energy 2016, 41, 21850.
- 53Y. Xia, R. Fang, Z. Xiao, H. Huang, Y. Gan, R. Yan, X. Lu, C. Liang, J. Zhang, X. Tao, W. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 23782.
- 54Z. Zhang, L.-L. Kong, S. Liu, G.-R. Li, X.-P. Gao, Adv. Energy Mater. 2017, 7, 1602543.
- 55J. Cai, C. Wu, S. Yang, Y. Zhu, P. K. Shen, K. Zhang, ACS. Appl. Mater. Interfaces 2017, 9, 33876.
- 56H.-J. Peng, T.-Z. Hou, Q. Zhang, J.-Q. Huang, X.-B. Cheng, M.-Q. Guo, Z. Yuan, L.-Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227.
- 57T. Z. Hou, X. Chen, H. J. Peng, J. Q. Huang, B. Q. Li, Q. Zhang, B. Li, Small 2016, 12, 3283.
- 58N. Fechler, T.-P. Fellinger, M. Antonietti, J. Mater. Chem. A 2013, 1, 14097.
- 59W. Ahn, K.-B. Kim, K.-N. Jung, K.-H. Shin, C.-S. Jin, J. Power Sources 2012, 202, 394.
- 60X. Li, M. Rao, D. Chen, H. Lin, Y. Liu, Y. Liao, L. Xing, W. Li, Electrochim. Acta 2015, 166, 93.
- 61L. Zhu, W. Zhu, X.-B. Cheng, J.-Q. Huang, H.-J. Peng, S.-H. Yang, Q. Zhang, Carbon 2014, 75, 161.
- 62C. Barchasz, F. Molton, C. Duboc, J. C. Lepretre, S. Patoux, F. Alloin, Anal. Chem. 2012, 84, 3973.
- 63T. Xu, J. Song, M. L. Gordin, H. Sohn, Z. Yu, S. Chen, D. Wang, ACS Appl. Mater. Interfaces 2013, 5, 11355.
- 64N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem., Int. Ed. Engl. 2011, 50, 5904.
- 65X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500.
- 66J. S. Lee, W. Kim, J. Jang, A. Manthiram, Adv. Energy Mater. 2017, 7, 1601943.
- 67R. Sahore, B. D. A. Levin, M. Pan, D. A. Muller, F. J. DiSalvo, E. P. Giannelis, Adv. Energy Mater. 2016, 6, 1600134.
- 68J. Shen, J. Liu, Z. Liu, R. Hu, J. Liu, M. Zhu, Chemistry 2018, 24, 4573.
- 69J. Li, J. Guo, J. Deng, Y. Huang, Mater. Lett. 2017, 189, 188.
- 70R.-S. Song, B. Wang, T.-T. Ruan, L. Wang, H. Luo, F. Wang, T.-T. Gao, D.-L. Wang, Appl. Surf. Sci. 2018, 427, 396.
- 71G. Gao, P. Zhai, Q. Zhang, C. J. Shearer, J. Zhao, J. G. Shapter, Chem. Eng. J. 2018, 333, 268.
- 72Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, Y. Liu, J. Electrochem. Soc. 2013, 160, A553.
- 73N. A. Cañas, K. Hirose, B. Pascucci, N. Wagner, K. A. Friedrich, R. Hiesgen, Electrochim. Acta 2013, 97, 42.
- 74Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin, J. Mater. Chem. 2011, 21, 8038.
- 75H. Shan, X. Li, Y. Cui, D. Xiong, B. Yan, D. Li, A. Lushington, X. Sun, Electrochim. Acta 2016, 205, 188.
- 76C. Li, X.-L. Sui, Z.-B. Wang, Q. Wang, D.-M. Gu, Chem. Eng. J. 2017, 326, 265.
- 77L. Fei, X. Li, W. Bi, Z. Zhuo, W. Wei, L. Sun, W. Lu, X. Wu, K. Xie, C. Wu, H. L. Chan, Y. Wang, Adv. Mater. 2015, 27, 5936.
- 78C. Zu, A. Manthiram, Adv. Energy Mater. 2013, 3, 1008.