Effective Bipyridine and Pyrazine-Based Polysulfide Dissolution Resistant Complex Framework Material Systems for High Capacity Rechargeable Lithium–Sulfur Batteries
Pavithra M. Shanthi
Department of Chemical and Petroleum Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15261 USA
Search for more papers by this authorPrashanth J. Hanumantha
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorRamalinga Kuruba
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorBharat Gattu
Department of Chemical and Petroleum Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15261 USA
Search for more papers by this authorMoni K. Datta
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorCorresponding Author
Prashant N. Kumta
Department of Chemical and Petroleum Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15261 USA
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, PA, 15261 USA
Search for more papers by this authorPavithra M. Shanthi
Department of Chemical and Petroleum Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15261 USA
Search for more papers by this authorPrashanth J. Hanumantha
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorRamalinga Kuruba
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorBharat Gattu
Department of Chemical and Petroleum Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15261 USA
Search for more papers by this authorMoni K. Datta
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Search for more papers by this authorCorresponding Author
Prashant N. Kumta
Department of Chemical and Petroleum Engineering, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15261 USA
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, 15261 USA
Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, 815C Benedum Hall, 3700 O'Hara Street, PA, 15261 USA
Search for more papers by this authorAbstract
Lithium–sulfur (Li–S) batteries with high theoretical capacity (≈1650 mAh g−1) and specific energy density (≈2567 Wh g−1) have not achieved commercialization status due to low cycling stability arising from lithium polysulfide dissolution. Herein, sulfur infiltrated noncarbonized noncarbonate containing metal organic complex framework material (CFM) systems; sulfur-copper-bipyridine-CFM (S-Cu-bpy-CFM) and sulfur-copper-pyrazine-CFM (S-Cu-pyz-CFM) are developed as sulfur cathodes for the first time. The S-Cu-bpy-CFM and S-Cu-pyz-CFM show an initial capacity of 1626 and 1565 mAh g−1 with stable capacities of 1063 and 1025 mAh g−1, respectively, after 150 cycles. An X-ray photoelectron spectroscopy (XPS) analysis after sulfur infiltration reveals the presence of —C—S— bonds arising from the Lewis acid–base interaction of the CFMs with sulfur. The battery separators cycled with the CMF cathodes display complete absence of polysulfides after 150 cycles. These CFM cathodes exhibit an initial fade in capacity during the first ≈25 cycles attributed to the irreversible reaction of nitrogen with sulfur (—N—S—) during cycling. A clear understanding of this chemical interaction between sulfur and nitrogen present in the sulfur-infiltrated CFMs is essential for engineering nitrogen containing hosts for trapping polysulfides effectively. Understanding reported here will lead to new materials for achieving the high specific energy densities characteristic to Li–S batteries.
Conflicts of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
ente201900141-sup-0001-SuppData-S1.docx4.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) Y. Yang, G. Zheng, Y. Cui, Chem. Soc. Rev. 2013, 42, 3018; b) M.-K. Song, Y. Zhang, E. J. Cairns, Nano Lett. 2013, 13, 5891.
- 2a) M. Ehsani, Y. Gao, S. Longo, K. Ebrahimi, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, CRC Press, Boca Raton, FL 2018; b) L. Zhang, X. Hu, Z. Wang, F. Sun, J. Deng, D. G. Dorrell, IEEE Trans. Veh. Technol. 2018, 67, 1027.
- 3N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252.
- 4A. Manthiram, S. H. Chung, C. Zu, Adv. Mater. 2015, 27, 1980.
- 5a) J. Kim, D. J. Lee, H. G. Jung, Y. K. Sun, J. Hassoun, B. Scrosati, Adv. Funct. Mater. 2013, 23, 1076; b) A. Manthiram, S. H. Chung, C. Zu, Adv. Mater. 2015, 27, 1980.
- 6V. S. Kolosnitsyn, E. V. Karaseva, Russ. J. Electrochem. 2008, 44, 506.
- 7U. Hofer, Nat. Rev. Microbiol. 2018, 16, 260.
- 8R. Fang, S. Zhao, Z. Sun, D. W. Wang, H. M. Cheng, F. Li, Adv. Mater. 2017, 29, 1606823.
- 9Y. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, Angew. Chem., Int. Ed. 2013, 52, 13186.
- 10Y. V. Mikhaylik, J. R. Akridge, J. Electrochem. Soc. 2004, 151, A1969.
- 11L. Wang, J. Liu, S. Yuan, Y. Wang, Y. Xia, Energy Environ. Sci. 2016, 9, 224.
- 12M. Edeling, R. W. Schmutzler, F. Hensel, Phil. Mag. Part B 1979, 39, 547.
- 13Z. W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 2016, 45, 5605.
- 14D.-W. Wang, Q. Zeng, G. Zhou, L. Yin, F. Li, H.-M. Cheng, I. R. Gentle, G. Q. M. Lu, J. Mater. Chem. A 2013, 1, 9382.
- 15N. Ding, L. Zhou, C. Zhou, D. Geng, J. Yang, S. W. Chien, Z. Liu, M. F. Ng, A. Yu, T. S. A. Hor, Sci. Rep. 2016, 6, 33154.
- 16L. Ming, L. Qing, Q. Xianying, L. Gemeng, H. Wenjie, Z. Dong, H. Yan-Bing, L. Baohua, K. Feiyu, Small 2017, 13, 1602539.
- 17T. Yim, M.-S. Park, J.-S. Yu, K. J. Kim, K. Y. Im, J.-H. Kim, G. Jeong, Y. N. Jo, S.-G. Woo, K. S. Kang, I. Lee, Y.-J. Kim, Electrochim. Acta 2013, 107, 454.
- 18a) Y. Fu, Y. S. Su, A. Manthiram, Angew. Chem., Int. Ed. 2013, 52, 6930; b) J. Zheng, M. Gu, H. Chen, P. Meduri, M. H. Engelhard, J.-G. Zhang, J. Liu, J. Xiao, J. Mater. Chem. A 2013, 1, 8464.
- 19a) C. B. Bucur, J. Muldoon, A. Lita, Energy Environ. Sci. 2016, 9, 992; b) G. Zhou, E. Paek, G. S. Hwang, A. Manthiram, Nat. Commun. 2015, 6, 7760; c) X. Liang, Y. Rangom, C. Y. Kwok, Q. Pang, L. F. Nazar, Adv. Mater. 2017, 29, 1603040.
- 20a) S. Liu, G. R. Li, X. P. Gao, ACS Appl. Mater. Interfaces 2016, 8, 7783; b) X. B. Cheng, C. Yan, J. Q. Huang, P. Li, L. Zhu, L. Zhao, Y. Zhang, W. Zhu, S. T. Yang, Q. Zhang, Energy Storage Mater. 2017, 6, 18.
- 21a) H. J. Peng, W. T. Xu, L. Zhu, D. W. Wang, J. Q. Huang, X. B. Cheng, Z. Yuan, F. Wei, Q. Zhang, Adv. Funct. Mater. 2016, 26, 6351; b) Q. Li, S. Zhu, Y. Lu, Adv. Funct. Mater. 2017, 27, 1606422.
- 22a) M. Rao, X. Geng, X. Li, S. Hu, W. Li, J. Power Sources 2012, 212, 179; b) M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin, C. Miao, H. Du, B. Li, Q.-H. Yang, Z. Lin, T. S. Zhao, F. Kang, Nano Energy 2016, 22, 278; c) K. Murata, S. Izuchi, Y. Yoshihisa, Electrochim. Acta 2000, 45, 1501; d) Q. Guo, Y. Han, H. Wang, X. Hong, C. Zheng, S. Liu, K. Xie, RSC Adv. 2016, 6, 101638.
- 23a) X.-J. Hong, T.-X. Tan, Y.-K. Guo, X.-Y. Tang, J.-Y. Wang, W. Qin, Y.-P. Cai, Nanoscale 2018, 10, 2774; b) X. Zhang, W. Wang, A. Wang, Y. Huang, K. Yuan, Z. Yu, J. Qiu, Y. Yang, J. Mater. Chem. A 2014, 2, 11660; c) J. Q. Huang, Q. Zhang, H. J. Peng, X. Y. Liu, W. Z. Qian, F. Wei, Energy Environ. Sci. 2014, 7, 347; d) G. Ma, Z. Wen, M. Wu, C. Shen, Q. Wang, J. Jin, X. Wu, Chem. Commun. 2014, 50, 14209; e) J. S. Kim, T. H. Hwang, B. G. Kim, J. Min, J. W. Choi, Adv. Funct. Mater. 2014, 24, 5359.
- 24L. Borchardt, M. Oschatz, S. Kaskel, Chem. – Eur. J. 2016, 22, 7324.
- 25a) B. Ding, C. Yuan, L. Shen, G. Xu, P. Nie, X. Zhang, Chem. – Eur. J. 2013, 19, 1013; b) D. Li, F. Han, S. Wang, F. Cheng, Q. Sun, W.-C. Li, ACS Appl. Mater. Interfaces 2013, 5, 2208; c) X. Liang, Z. Wen, Y. Liu, H. Zhang, L. Huang, J. Jin, J. Power Sources 2011, 196, 3655.
- 26H. B. Wu, S. Wei, L. Zhang, R. Xu, H. H. Hng, X. W. Lou, Chem. – Eur. J. 2013, 19, 10804.
- 27a) Z. Gong, Q. Wu, F. Wang, X. Li, X. Fan, H. Yang, Z. Luo, RSC Adv. 2016, 6, 37443; b) J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, L. F. Nazar, Angew. Chem., Int. Ed. 2012, 51, 3591.
- 28a) Z. Juan, Y. Chun-Peng, Y. Ya-Xia, W. Li-Jun, G. Yu-Guo, Adv. Mater. 2016, 28, 9539; b) H. Sohn, M. L. Gordin, T. Xu, S. Chen, D. Lv, J. Song, A. Manivannan, D. Wang, ACS Appl. Mater. Interfaces 2014, 6, 7596; c) J. Zheng, G. Guo, H. Li, L. Wang, B. Wang, H. Yu, Y. Yan, D. Yang, A. Dong, ACS Energy Lett. 2017, 2, 1105.
- 29H. J. Peng, J. Q. Huang, M. Q. Zhao, Q. Zhang, X. B. Cheng, X. Y. Liu, W. Z. Qian, F. Wei, Adv. Funct. Mater. 2014, 24, 2772.
- 30H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 2011, 11, 2644.
- 31X. Li, Y. Cao, W. Qi, L. V. Saraf, J. Xiao, Z. Nie, J. Mietek, J.-G. Zhang, B. Schwenzer, J. Liu, J. Mater. Chem. 2011, 21, 16603.
- 32J. Wang, S. Y. Chew, Z. W. Zhao, S. Ashraf, D. Wexler, J. Chen, S. H. Ng, S. L. Chou, H. K. Liu, Carbon 2008, 46, 229.
- 33K. Xi, S. Cao, X. Peng, C. Ducati, R. Vasant Kumar, A. K. Cheetham, Chem. Commun. 2013, 49, 2192.
- 34G. Xu, B. Ding, L. Shen, P. Nie, J. Han, X. Zhang, J. Mater. Chem. A 2013, 1, 4490.
- 35a) J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M. H. Engelhard, J.-G. Zhang, J. Liu, J. Xiao, Nano Lett. 2014, 14, 2345; b) Z. Wang, X. Li, Y. Cui, Y. Yang, H. Pan, Z. Wang, C. Wu, B. Chen, G. Qian, Cryst. Growth Des. 2013, 13, 5116.
- 36H. Park, D. J. Siegel, Chem. Mater. 2017, 29, 4932.
- 37P. M. Shanthi, P. J. Hanumantha, B. Gattu, M. Sweeney, M. K. Datta, P. N. Kumta, Electrochim. Acta 2017, 229, 208.
- 38P. Amo-Ochoa, G. Givaja, P. J. S. Miguel, O. Castillo, F. Zamora, Inorg. Chem. Commun. 2007, 10, 921.
- 39F.-N. Shi, A. R. Silva, J. Rocha, J. Solid State Chem. 2011, 184, 2196.
- 40a) O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. Ö. Yazaydın, J. T. Hupp, J. Am. Chem. Soc. 2012, 134, 15016; b) B. Li, H.-M. Wen, W. Zhou, Jeff Q. Xu, B. Chen, Chem 2016, 1, 557.
- 41a) L. Liang, C. Liu, F. Jiang, Q. Chen, L. Zhang, H. Xue, H.-L. Jiang, J. Qian, D. Yuan, M. Hong, Nat. Commun. 2017, 8, 1233; b) C.-H. Lim, A. M. Holder, J. T. Hynes, C. B. Musgrave, Inorg. Chem. 2013, 52, 10062.
- 42a) X. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, M. J. Rosseinsky, Science 2004, 306, 1012; b) X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R. Champness, M. Schröder, J. Am. Chem. Soc. 2009, 131, 2159; c) R. Q. Snurr, J. T. Hupp, S. T. Nguyen, AIChE J. 2004, 50, 1090; d) A. J. Fletcher, E. J. Cussen, D. Bradshaw, M. J. Rosseinsky, K. M. Thomas, J. Am. Chem. Soc. 2004, 126, 9750.
- 43T. Fujimori, A. Morelos-Gómez, Z. Zhu, H. Muramatsu, R. Futamura, K. Urita, M. Terrones, T. Hayashi, M. Endo, S. Y. Hong, Nat. Commun. 2013, 4, 2162.
- 44Y. Zhang, Z. Gao, N. Song, X. Li, Electrochim. Acta 2016, 222, 1257.
- 45R. Brudler, H. J. M. de Groot, W. B. S. van Liemt, P. Gast, A. J. Hoff, J. Lugtenburg, K. Gerwert, FEBS Lett. 1995, 370, 88.
- 46P. D. Lewis, K. E. Lewis, R. Ghosal, S. Bayliss, A. J. Lloyd, J. Wills, R. Godfrey, P. Kloer, L. A. Mur, BMC Cancer 2010, 10, 640.
- 47G. Parthasarthy, M. Sevegney, R. M. Kannan, J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 2539.
- 48X. Colom, F. Carrillo, F. Nogués, P. Garriga, Polym. Degrad. Stab. 2003, 80, 543.
- 49J. Tang, X. Jing, B. Wang, F. Wang, Synth. Met. 1988, 24, 231.
- 50S.-N. Yuen, S.-M. Choi, D. L. Phillips, C.-Y. Ma, Food Chem. 2009, 114, 1091.
- 51M. L. Duarte, M. C. Ferreira, M. R. Marvão, J. Rocha, Int. J. Biol. Macromol. 2002, 31, 1.
- 52T. R. Devi, S. Gayathri, Int. J. Pharm. Sci. Rev. Res. 2010, 2, 106.
- 53R. Seoudi, G. S. El-Bahy, Z. A. El Sayed, J. Mol. Struct. 2005, 753, 119.
- 54S. J. Wen, T. J. Richardson, D. I. Ghantous, K. A. Striebel, P. N. Ross, E. J. Cairns, J. Electroanal. Chem. 1996, 408, 113.
- 55N. M. Logacheva, V. E. Baulin, A. Y. Tsivadze, E. N. Pyatova, I. S. Ivanova, Y. A. Velikodny, V. V. Chernyshev, Dalton Trans. 2009, 2482.
- 56J. M. Thomas, I. Adams, R. H. Williams, M. Barber, J. Chem. Soc., Faraday Trans. 2. 1972, 68, 755.
- 57G. Hollinger, P. Kumurdjian, J. M. Mackowski, P. Pertosa, L. Porte, T. M. Duc, J. Electron. Spectrosc. Relat. Phenom. 1974, 5, 237.
- 58B. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling, K. Siegbahn, Phys. Scr. 1970, 1, 286.
- 59a) B. J. Lindberg, K. Hamrin, G. Johansson, U. Gelius, A. Fahlman, C. Nordling, K. Siegbahn, Phys. Scr. 1970, 1, 286; b) J. A. Gardella Jr, S. A. Ferguson, R. L. Chin, Appl. Spectrosc. 1986, 40, 224.
- 60Z. Zhao, S. Wang, R. Liang, Z. Li, Z. Shi, G. Chen, J. Mater. Chem. A 2014, 2, 13509.
- 61M. Xiao, M. Huang, S. Zeng, D. Han, S. Wang, L. Sun, Y. Meng, RSC Adv. 2013, 3, 4914.
- 62a) G. Ma, F. Huang, Z. Wen, Q. Wang, X. Hong, J. Jin, X. Wu, J. Mater. Chem. A 2016, 4, 16968; b) P. J. Hanumantha, B. Gattu, O. Velikokhatnyi, M. K. Datta, S. S. Damle, P. N. Kumta, J. Electrochem. Soc. 2014, 161, A1173; c) C. Liang, N. J. Dudney, J. Y. Howe, Chem. Mater. 2009, 21, 4724.
- 63a) X. Liang, C. Hart, Q. Pang, A. Garsuch, T. Weiss, L. F. Nazar, Nat. Commun. 2015, 6, 5682; b) C. Zu, Y. Fu, A. Manthiram, J. Mater. Chem. A 2013, 1, 10362; c) Y.-S. Su, Y. Fu, T. Cochell, A. Manthiram, Nat. Commun. 2013, 4, 2985; d) C. Zu, N. Azimi, Z. Zhang, A. Manthiram, J. Mater. Chem. A 2015, 3, 14864; e) P. Murugavel Shanthi, P. Jampani Hanumantha, T. Albuquerque, B. Gattu, P. N. Kumta, ACS Appl. Energy Mater. 2018, 1, 483.
- 64J. Jin, Z. Wen, G. Ma, Y. Lu, K. Rui, Solid State Ionics 2014, 262, 170.
- 65S. Dapoz, N. Betz, M.-J. Guittet, A. Le Moël, Nucl. Instrum. Methods Phys. Res., Sect. B 1995, 105, 120.
- 66J. Riga, P. Snauwaert, A. De Pryck, R. Lazzaroni, J. P. Boutique, J. J. Verbist, J. L. Brédas, J. M. André, C. Taliani, Synth. Met. 1987, 21, 223.
- 67D. R. Huntley, J. Phys. Chem. 1992, 96, 4550.
- 68F. Qin, K. Zhang, J. Fang, Y. Lai, Q. Li, Z. Zhang, J. Li, New J. Chem. 2014, 38, 4549.
- 69Z. Li, L. Yuan, Z. Yi, Y. Liu, Y. Xin, Z. Zhang, Y. Huang, Nanoscale 2014, 6, 1653.
- 70a) M. Barber, J. A. Connor, M. F. Guest, I. H. Hillier, M. Schwarz, M. Stacey, J. Chem. Soc., Faraday Trans. 2. 1973, 69, 551; b) D. Feng, Z. Zhou, M. Bo, Polym. Degrad. Stab. 1995, 50, 65; c) T. Nakayama, K. Inamura, Y. Inoue, S. Ikeda, K. Kishi, Surf. Sci. 1987, 179, 47.
- 71S. Aduru, S. Contarini, J. W. Rabalais, J. Phys. Chem. 1986, 90, 1683.
- 72H. U. Hummel, W. Förner, K. Krogmann, Z. Anorg. Allg. Chem. 1986, 540, 300.
10.1002/zaac.19865400933 Google Scholar
- 73S. Lalitha, P. Manoharan, J. Electron Spectrosc. Relat. Phenom. 1989, 49, 61.
- 74E. Z. Kurmaev, V. V. Fedorenko, V. R. Galakhov, S. Bartkowski, S. Uhlenbrock, M. Neumann, P. R. Slater, C. Greaves, Y. Miyazaki, J. Supercond. 1996, 9, 97.
- 75C. D. Wagner, J. A. Taylor, J. Electron Spectrosc. Relat. Phenom. 1982, 28, 211.
- 76a) C. Bellitto, M. Bonamico, V. Fares, P. Imperatori, S. Patrizio, J. Chem. Soc. Dalton Trans. 1989, 4, 719;
10.1039/DT9890000719 Google Scholarb) M. M. Chehimi, M. Delamar, J. Electron Spectrosc. Relat. Phenom. 1989, 49, 231.10.1016/0368-2048(89)85010-8 Google Scholar
- 77a) W. Yao, Z. Zhang, J. Gao, J. Li, J. Xu, Z. Wang, Y. Yang, Energy Environ. Sci. 2009, 2, 1102; b) X. Li, Z. Yin, X. Li, C. Wang, Ionics 2014, 20, 795.
- 78L.-F. Liao, C.-F. Lien, J.-L. Lin, Phys. Chem. Chem. Phys. 2001, 3, 3831.
- 79L. Pereira, A. Sousa, H. Coelho, A. M. Amado, P. J. A. Ribeiro-Claro, Biomol. Eng. 2003, 20, 223.
- 80S. Strawn, J. White, G. Marshall, L. Gee, H. Goodis, S. Marshall, J. Dent. 1996, 24, 417.
- 81Z. Li, W.-T. Jiang, H. Hong, Spectrochim. Acta, Part A 2008, 71, 1525.
- 82B. Mohammadi, A. A. Yousefi, S. M. Bellah, Polym. Test. 2007, 26, 42.
- 83Y. Peng, P. Wu, Polymer 2004, 45, 5295.
- 84H. Yang, G. V. Zhuang, P. N. Ross, J. Power Sources 2006, 161, 573.
- 85M. Ludvigsson, J. Lindgren, J. Tegenfeldt, Electrochim. Acta 2000, 45, 2267.
- 86P. Hassanzadeh, L. Andrews, J. Am. Chem. Soc. 1992, 114, 83.
- 87C. Rao, R. Venkataraghavan, T. Kasturi, Can. J Chem. 1964, 42, 36.
- 88H. Yadav, N. Sinha, B. Kumar, Mater. Res. Bull. 2015, 64, 194.
- 89Z. Slavkova, O. Kostadinova, G. Avdeev, T. Petkova, Advanced Nanotechnologies for Detection and Defence against CBRN Agents, Springer, Berlin/New York 2018, pp. 87–93.
10.1007/978-94-024-1298-7_11 Google Scholar