The Effects of Mechanical and Thermal Loads during Lithium-Ion Pouch Cell Formation and Their Impacts on Process Time
Heiner Hans Heimes
Production Engineering of E-Mobility Components, RWTH Aachen University, Campus Boulevard 30, 52072 Aachen, Germany
Search for more papers by this authorCorresponding Author
Christian Offermanns
Production Engineering of E-Mobility Components, RWTH Aachen University, Campus Boulevard 30, 52072 Aachen, Germany
Search for more papers by this authorAhmad Mohsseni
Production Engineering of E-Mobility Components, RWTH Aachen University, Campus Boulevard 30, 52072 Aachen, Germany
Search for more papers by this authorHendrik Laufen
Production Engineering of E-Mobility Components, RWTH Aachen University, Campus Boulevard 30, 52072 Aachen, Germany
Search for more papers by this authorUwe Westerhoff
Institute for High Voltage Technology and Electrical Power Systems, Technische Universität Braunschweig, Schleinitzstraße 23, 38106 Braunschweig, Germany
Search for more papers by this authorLouisa Hoffmann
Institute for High Voltage Technology and Electrical Power Systems, Technische Universität Braunschweig, Schleinitzstraße 23, 38106 Braunschweig, Germany
Search for more papers by this authorPhilip Niehoff
MEET – Münster Electrochemical Energy Technology, University of Münster, Corrensstraße 46, 48149 Münster, Germany
Search for more papers by this authorMichael Kurrat
Institute for High Voltage Technology and Electrical Power Systems, Technische Universität Braunschweig, Schleinitzstraße 23, 38106 Braunschweig, Germany
Search for more papers by this authorMartin Winter
MEET – Münster Electrochemical Energy Technology, University of Münster, Corrensstraße 46, 48149 Münster, Germany
Search for more papers by this authorAchim Kampker
Production Engineering of E-Mobility Components, RWTH Aachen University, Campus Boulevard 30, 52072 Aachen, Germany
Search for more papers by this authorHeiner Hans Heimes
Production Engineering of E-Mobility Components, RWTH Aachen University, Campus Boulevard 30, 52072 Aachen, Germany
Search for more papers by this authorCorresponding Author
Christian Offermanns
Production Engineering of E-Mobility Components, RWTH Aachen University, Campus Boulevard 30, 52072 Aachen, Germany
Search for more papers by this authorAhmad Mohsseni
Production Engineering of E-Mobility Components, RWTH Aachen University, Campus Boulevard 30, 52072 Aachen, Germany
Search for more papers by this authorHendrik Laufen
Production Engineering of E-Mobility Components, RWTH Aachen University, Campus Boulevard 30, 52072 Aachen, Germany
Search for more papers by this authorUwe Westerhoff
Institute for High Voltage Technology and Electrical Power Systems, Technische Universität Braunschweig, Schleinitzstraße 23, 38106 Braunschweig, Germany
Search for more papers by this authorLouisa Hoffmann
Institute for High Voltage Technology and Electrical Power Systems, Technische Universität Braunschweig, Schleinitzstraße 23, 38106 Braunschweig, Germany
Search for more papers by this authorPhilip Niehoff
MEET – Münster Electrochemical Energy Technology, University of Münster, Corrensstraße 46, 48149 Münster, Germany
Search for more papers by this authorMichael Kurrat
Institute for High Voltage Technology and Electrical Power Systems, Technische Universität Braunschweig, Schleinitzstraße 23, 38106 Braunschweig, Germany
Search for more papers by this authorMartin Winter
MEET – Münster Electrochemical Energy Technology, University of Münster, Corrensstraße 46, 48149 Münster, Germany
Search for more papers by this authorAchim Kampker
Production Engineering of E-Mobility Components, RWTH Aachen University, Campus Boulevard 30, 52072 Aachen, Germany
Search for more papers by this authorAbstract
The most cost-intensive components of the battery system for electric vehicles are the lithium-ion battery cells. Thus, to reduce the overall cost of a battery system, a clear objective is to reduce the production cost of lithium-ion battery cells. Cost drivers are to be identified, which are essential to enable potentials for cost reduction. In particular, the formation and aging process represents a high potential for process cost reduction because of its enormous process time expenditure. The automotive industry requires up to 3 weeks for the formation and aging process of a single lithium-ion battery cell. Due to the high relevance of these processes, the research project OptiZellForm as part of the ProZell Cluster examines those production steps in detail. Environmental conditions such as mechanical load and elevated temperature as well as the electrical and chemical properties influencing the formation and aging process are investigated. The focus of this study is the investigation of the mechanical exertion and elevated temperature with regard to the reduction of the formation process duration and thus the reduction of the production cost. For this reason, a specially designed device is used to investigate these parameters for lithium-ion battery cells.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1 Bundesregierung, Nationaler Entwicklungsplan Elektromobilität der Bundesregierung, 2009.
- 2S. M. Knupfer, R. Hensley, P. Hertzke, P. Schaufuss, Electrifying Insights: How Automakers can Drive Electrified Vehicle Sales and Profitability, McKinsey & Company, Lisboa, Portugal 2017.
- 3M. Vogt, S. Bongard, Treiber und Hemmnisse bei der Anschaffung von Elektroautos. Ergebnisse der Nutzerbefragung von elektromobilitätsinteressierten Personen im Rahmen der Begleit- und Wirkungsforschung, Begleit- und Wirkungsforschung Schaufenster Elektromobilität (BuW) Deutsches Dialog Institut GmbH, Frankfurt am Main 2015.
- 4A. Kampker, H. H. Heimes, C. Sesterheim, M. Schmidt, in IFIP Advances in Information and Communication Technology, Vol. 414 (Eds: V. Prabhu, M. Taisch, D. Kiritsis), Springer Berlin Heidelberg, Berlin/Heidelberg 2013, pp. 199–209.
- 5 Nationale Plattform Elektromobilität (NPE), Roadmap integrierte Zell- und Batterieproduktion Deutschland. AG 2 – Batterietechnologie, Gemeinsame Geschäftsstelle Elektromobilität der Bundesregierung (GGEMO), Berlin 2016.
- 6a) M. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433; b) T. Placke, R. Kloepsch, S. Dühnen, M. Winter, J. Solid State Electrochem. 2017, 21, 1939.
- 7a) L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, J. Power Sources 2013, 226, 272;
b) A. Thielmann, A. Sauer, R. Isenmann, M. Wietschel, P. Plötz, Produkt-Roadmap Lithium-Ionen-Batterien 2030, Fraunhofer ISI, Karlsruhe 2012;
c) S. Michaelis, Roadmap Batterie-Produktionsmittel 2030, VDMA Batterieproduktion, Frankfurt am Main 2016;
d) S. Leuthner, in Handbuch Lithium-Ionen-Batterien (Ed: R. Korthauer), Springer Berlin Heidelberg, Berlin, Heidelberg, s.l. 2013, pp. 13–19;
10.1007/978-3-642-30653-2_2 Google Scholare) R. Wagner, N. Preschitschek, S. Passerini, J. Leker, M. Winter, J. Appl. Electrochem. 2013, 43, 481; f) R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267.
- 8 Nationale Plattform Elektromobilität (NPE), Fortschrittsbericht 2018 – Markthochlaufphase, Gemeinsame Geschäftsstelle Elektromobilität der Bundesregierung (GGEMO), Berlin 2018.
- 9G. Reinhart, T. Zeilinger, J. Kurfer, M. Westermeier, C. Thiemann, M. Glonegger, M. Wunderer, C. Tammer, M. Schweier, M. Heinz, in Proc. of the first Conf. of the German Academic Society for Production Engineering (WGP), Berlin, Germany, 8th - 9th june 2011 (Ed: G. Schuh), Springer, Berlin 2013, pp. 3–12.
- 10A. Kwade, W. Haselrieder, R. Leithoff, A. Modlinger, F. Dietrich, K. Droeder, Nat. Energy 2018, 3, 290.
- 11a) S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D. L. Wood, Carbon 2016, 105, 52; b) M. Winter, Z. Phys. Chem. 2009, 223, 1395.
- 12D. R. Gallus, R. Wagner, S. Wiemers-Meyer, M. Winter, I. Cekic-Laskovic, Electrochim. Acta 2015, 184, 410.
- 13D. L. Wood, J. Li, C. Daniel, J. Power Sources 2015, 275, 234.
- 14A. Kampker, in Elektromobilproduktion (Ed: A. Kampker), Springer Vieweg, Berlin 2014, pp. 43–113.
10.1007/978-3-642-42022-1_3 Google Scholar
- 15H. Q. Pham, E.-H. Hwang, Y.-G. Kwon, S.-W. Song, J. Power Sources 2016, 323, 220.
- 16Y.-B. He, Z.-Y. Tang, Q.-S. Song, H. Xie, Y.-G. Liu, Q. Xu, ECS – The Electrochemical Society 2008, 155, A481.
- 17S.-B. Lee, S.-I. Pyun, Carbon 2002, 40, 2333.
- 18T. L. Kulova, Russ. J. Electrochem. 2004, 40, 1052.
- 19C. Huang, K. Huang, H. Wang, S. Liu, Y. Zeng, J. Solid State Electrochem. 2011, 15, 1987.
- 20S. Bhattacharya, A. R. Riahi, A. T. Alpas, Carbon 2014, 67, 592.
- 21V. Sharova, Enhancing the Performance of Lithium Batteries through the Development of Improved Electrolyte Formulation, Formation Protocol and Graphite Surface Modification, Karlsruher Institut für Technologie, Karlsruhe 2018.
- 22A. S. Mussa, M. Klett, G. Lindbergh, R. W. Lindström, J. Power Sources 2018, 385, 18.
- 23J. Cannarella, C. B. Arnold, J. Power Sources 2014, 245, 745.
- 24M. Petzl, M. Kasper, M. A. Danzer, J. Power Sources 2015, 275, 799.
- 25Z. Mao, M. Farkhondeh, M. Pritzker, M. Fowler, Z. Chen, J. Electrochem. Soc. 2017, 164, A3469.
- 26Y. C. Zhang, O. Briat, J.-Y. Deletage, C. Martin, G. Gager, J.-M. Vinassa, in Proc. 2018 IEEE Int. Conf. on Industrial Technology (ICIT). Lyon Congress Center, Lyon, France, 19-22 February, 2018 (Eds: IEEE International Conference on Industrial Technology, IEEE Industrial Electronics Society, ICIT), IEEE, Piscataway, NJ 2018, pp. 2055–2059.
- 27A. Barai, Y. Guo, A. McGordon, P. Jennings, 2013 Int. Conf. on Connected Vehicles and Expo (ICCVE), IEEE, 2013.
- 28R. S. Rubino, H. Gan, E. S. Takeuchi, J. Electrochem. Soc. 2001, 148, A1029.
- 29C. Peabody, C. B. Arnold, J. Power Sources 2011, 196, 8147.
- 30Y. Leng, S. Ge, D. Marple, X.-G. Yang, C. Bauer, P. Lamp, C.-Y. Wang, J. Electrochem. Soc. 2017, 164, A1037.
- 31K. Kumai, H. Miyashiro, Y. Kobayashi, K. Takei, R. Ishikawa, J. Power Sources 1999, 715.
- 32M. Ecker, J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust, P. Dechent, D. U. Sauer, J. Power Sources 2012, 215, 248.
- 33D. D. MacNeil, J. Electrochem. Soc. 1999, 146, 3596.
- 34a) B. S. Parimalam, A. D. MacIntosh, R. Kadam, B. L. Lucht, J. Phys. Chem. C 2017, 121, 22733; b) J. Vetter, P. Novák, M. R. Wagner, C. Veit, K.-C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources 2005, 147, 269.
- 35M. N. Richard, J. Electrochem. Soc. 1999, 146, 2068.
- 36S. S. Zhang, K. Xu, T. R. Jow, J. Power Sources 2003, 115, 137.
- 37C. J. Weber, S. Geiger, S. Falusi, M. Roth, in AIP Conf. Proc., AIP Publishing LLC 2014, pp. 66–81.
- 38A. Sakti, J. J. Michalek, E. R. H. Fuchs, J. F. Whitacre, J. Power Sources 2015, 273, 966.
- 39Gert Berckmans, Energies 2017, 10, 1314.
- 40P. A. Nelson, K. G. Gallagher, I. D. Bloom, D. W. Dees, Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles, Argonne National Lab (ANL), Argonne, IL, United States.
- 41a) D. Chung, E. Elgqvist, S. Santhanagopalan, Automotive Lithium-ion Cell Manufacturing: Regional Cost Structures and Supply Chain Considerations, Clean Energy Manufacturing Analysis Center, United States, 2016; b) R. J. Brodd, C. Helou, J. Power Sources 2013, 231, 293; c) R. E. Ciez, J. F. Whitacre, J. Power Sources 2017, 340, 273.
- 42J.-H. Schünemann, Zugl.: Braunschweig, Techn. Univ., Diss., Sierke, Göttingen 2015.
- 43D. Aurbach, B. Markovsky, A. Rodkin, M. Cojocaru, E. Levi, H.-J. Kim, Electrochim. Acta 2002, 47, 1899.