Human IL-6-Producing B Cells Promote the Differentiation of Monocytes Toward an Anti-Inflammatory CD16⁺CD163⁺CD206⁺PD-L1⁺ Phenotype in Tuberculosis
Corresponding Author
Alan Bénard
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
Search for more papers by this authorLuciana Balboa
Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167) / International Research Project Toulouse, France, Buenos Aires, Argentina
Search for more papers by this authorMaxime Caouaille
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
Search for more papers by this authorLea Ravon-Katossky
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
Search for more papers by this authorEtienne Meunier
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
Search for more papers by this authorSimon Fillatreau
Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris, Paris, France
Université Paris Cité, Faculté de Médecine, Paris, France
AP-HP, Hôpital Necker-Enfants Malades, Paris, France
Search for more papers by this authorMaria Del Carmen Sasiain
Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167) / International Research Project Toulouse, France, Buenos Aires, Argentina
Search for more papers by this authorOlivier Neyrolles
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167) / International Research Project Toulouse, France, Buenos Aires, Argentina
Search for more papers by this authorCorresponding Author
Denis Hudrisier
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
Search for more papers by this authorCorresponding Author
Alan Bénard
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
Department of Surgery, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
Search for more papers by this authorLuciana Balboa
Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167) / International Research Project Toulouse, France, Buenos Aires, Argentina
Search for more papers by this authorMaxime Caouaille
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
Search for more papers by this authorLea Ravon-Katossky
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
Search for more papers by this authorEtienne Meunier
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
Search for more papers by this authorSimon Fillatreau
Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMR 8253, Université de Paris, Paris, France
Université Paris Cité, Faculté de Médecine, Paris, France
AP-HP, Hôpital Necker-Enfants Malades, Paris, France
Search for more papers by this authorMaria Del Carmen Sasiain
Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167) / International Research Project Toulouse, France, Buenos Aires, Argentina
Search for more papers by this authorOlivier Neyrolles
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
International Associated Laboratory (LIA) CNRS IM-TB/HIV (1167) / International Research Project Toulouse, France, Buenos Aires, Argentina
Search for more papers by this authorCorresponding Author
Denis Hudrisier
Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
Search for more papers by this authorFunding: This research was supported by the Argentinean National Agency of Promotion of Science and Technology, Agence Nationale de la Recherche BTB-12-BSV3-0002, Fondation Bettencourt Schueller Explore-TB and Coup d'Elan, Deutsche Forschungsgemeinschaft BE6981/1-1, BE6981/4-1.
ABSTRACT
The polarization of the monocyte/macrophage compartment toward an anti-inflammatory profile is considered detrimental in tuberculosis (TB), but the factors controlling M2 polarization in this context are still poorly understood. Here, we found that B cells promote the differentiation of human monocytes toward an M2-like activation program through a process primarily dependent on IL-6 and the activation of STAT3 signaling in monocytes. This confers monocytes with immunomodulatory properties characterized by a reduced ability to produce proinflammatory cytokines and to stimulate IFNγ secretion by allogeneic T cells. Our findings were validated using B cells from TB patients, which constitutively produce high levels of IL-6, underscoring the clinical relevance of our experimental observations. Collectively, our results indicate that human B-cell-derived IL-6 might impair TB immunity by driving monocyte polarization toward an anti-inflammatory phenotype.
Conflicts of Interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
eji5970-sup-0001-SuppMat.pdf448.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 World Health Organisation (WHO). Global Tuberculosis Report 2024. 2024.
- 2M. Benoit, B. Desnues, and J.-L. Mege, “Macrophage Polarization in Bacterial Infections,” Journal of Immunology, Baltimore, MD 181 (2008): 3733–3739, https://doi.org/10.4049/jimmunol.181.6.3733. 1950.
- 3M. V. S. Rajaram, B. Ni, C. E. Dodd, and L. S. Schlesinger, “Macrophage Immunoregulatory Pathways in Tuberculosis,” Seminars in Immunology 26 (2014): 471–485, https://doi.org/10.1016/j.smim.2014.09.010.
- 4C. Lastrucci, A. Bénard, L. Balboa, et al., “Tuberculosis Is Associated with Expansion of a Motile, Permissive and Immunomodulatory CD16(+) Monocyte Population via the IL-10/STAT3 Axis,” Cell Research 25 (2015): 1333–1351, https://doi.org/10.1038/cr.2015.123.
- 5A. Khan, V. K. Singh, R. L. Hunter, and C. Jagannath, “Macrophage Heterogeneity and Plasticity in Tuberculosis,” J Leukoc Biol 106 (2019): 275–282, https://doi.org/10.1002/JLB.MR0318-095RR.
- 6G. Lugo-Villarino, C. Vérollet, I. Maridonneau-Parini, and O. Neyrolles, “Macrophage Polarization: Convergence Point Targeted by Mycobacterium Tuberculosis and HIV,” Frontiers in Immunology 2 (2011): 43, https://doi.org/10.3389/fimmu.2011.00043.
- 7C. Yuan, Z.-L. Qu, X.-L. Tang, et al., “Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan Induces IL-10-Producing B Cells and Hinders CD4+Th1 Immunity,” Iscience 11 (2019): 13–30, https://doi.org/10.1016/j.isci.2018.11.039.
- 8P. Sampath, K. Moideen, U. D. Ranganathan, and R. Bethunaickan, “Monocyte Subsets: Phenotypes and Function in Tuberculosis Infection,” Frontiers in Immunology 9 (2018): 1726, https://doi.org/10.3389/fimmu.2018.01726.
- 9N. O. Amiano, J. M. Pellegrini, M. P. Morelli, et al., “Circulating Monocyte-Like Myeloid Derived Suppressor Cells and CD16 Positive Monocytes Correlate With Immunological Responsiveness of Tuberculosis Patients,” Frontiers in Cellular and Infection Microbiology 12 (2022): 841741, https://doi.org/10.3389/fcimb.2022.841741.
- 10L. Balboa, M. M. Romero, E. Laborde, et al., “Impaired Dendritic Cell Differentiation of CD16-positive Monocytes in Tuberculosis: Role of p38 MAPK,” European Journal of Immunology 43 (2013): 335–347, https://doi.org/10.1002/eji.201242557.
- 11M. C. Tsai, S. Chakravarty, G. Zhu, et al., “Characterization of the Tuberculous Granuloma in Murine and human Lungs: Cellular Composition and Relative Tissue Oxygen Tension,” Cellular Microbiology 8 (2006): 218–232, https://doi.org/10.1111/j.1462-5822.2005.00612.x.
- 12A. J. Sawyer, E. Patrick, J. Edwards, et al., “Spatial Mapping Reveals Granuloma Diversity and Histopathological Superstructure in human Tuberculosis,” Journal of Experimental Medicine 220 (2023): e20221392, https://doi.org/10.1084/jem.20221392.
- 13E. F. McCaffrey, M. Donato, L. Keren, et al., “The Immunoregulatory Landscape of Human Tuberculosis Granulomas,” Nature Immunology 23 (2022): 318–329, https://doi.org/10.1038/s41590-021-01121-x.
- 14J. Phuah, E. A. Wong, H. P. Gideon, et al., “Effects of B Cell Depletion on Early Mycobacterium Tuberculosis Infection in Cynomolgus Macaques,” Infection and Immunity 84 (2016): 1301–1311, https://doi.org/10.1128/IAI.00083-16.
- 15P. Shen, T. Roch, V. Lampropoulou, et al., “IL-35-producing B Cells Are Critical Regulators of Immunity during Autoimmune and Infectious Diseases,” Nature 507 (2014): 366–370, https://doi.org/10.1038/nature12979.
- 16R. Li, A. Rezk, Y. Miyazaki, et al., “Proinflammatory GM-CSF-producing B Cells in Multiple Sclerosis and B Cell Depletion Therapy,” Science Translational Medicine 7 (2015): 310ra166, https://doi.org/10.1126/scitranslmed.aab4176.
- 17S.-C. Wong, A.-L. Puaux, M. Chittezhath, et al., “Macrophage Polarization to a Unique Phenotype Driven by B Cells,” European Journal of Immunology 40 (2010): 2296–2307, https://doi.org/10.1002/eji.200940288.
- 18A. Bénard, I. Sakwa, P. Schierloh, et al., “B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis,” American Journal of Respiratory and Critical Care Medicine 197 (2018): 801–813, https://doi.org/10.1164/rccm.201707-1475OC.
- 19I. Linge, A. Tsareva, E. Kondratieva, et al., “Pleiotropic Effect of IL-6 Produced by B-Lymphocytes During Early Phases of Adaptive Immune Responses Against TB Infection,” Frontiers in Immunology 13 (2022): 750068, https://doi.org/10.3389/fimmu.2022.750068.
- 20J. Ackermann, L. Arndt, J. Fröba, et al., “IL-6 Signaling Drives Self-Renewal and Alternative Activation of Adipose Tissue Macrophages,” Frontiers in Immunology 15 (2024): 1201439, https://doi.org/10.3389/fimmu.2024.1201439.
- 21P. Shen and S. Fillatreau, “Antibody-independent Functions of B Cells: A Focus on Cytokines,” Nature Reviews Immunology 15 (2015): 441–451, https://doi.org/10.1038/nri3857.
- 22M. Zimmermann, F. Arruda-Silva, F. Bianchetto-Aguilera, et al., “IFNα Enhances the Production of IL-6 by Human Neutrophils Activated via TLR8,” Scientific Reports 6 (2016): 19674, https://doi.org/10.1038/srep19674.
- 23Y. Wang, A. H. H. van Boxel-Dezaire, H. Cheon, J. Yang, and G. R. Stark, “STAT3 Activation in Response to IL-6 Is Prolonged by the Binding of IL-6 Receptor to EGF Receptor,” PNAS 110 (2013): 16975–16980, https://doi.org/10.1073/pnas.1315862110.
- 24S. Agrawal and S. Gupta, “TLR1/2, TLR7, and TLR9 Signals Directly Activate human Peripheral Blood Naive and Memory B Cell Subsets to Produce Cytokines, Chemokines, and Hematopoietic Growth Factors,” Journal of Clinical Immunology 31 (2011): 89–98, https://doi.org/10.1007/s10875-010-9456-8.
- 25M. M. Hossain and M.-N. Norazmi, “Pattern Recognition Receptors and Cytokines in Mycobacterium Tuberculosis Infection–the Double-edged Sword?,” BioMed Research International 2013 (2013): 179174, https://doi.org/10.1155/2013/179174.
- 26M. R. Fernando, J. L. Reyes, J. Iannuzzi, G. Leung, and D. M. McKay, “The Pro-inflammatory Cytokine, Interleukin-6, Enhances the Polarization of Alternatively Activated Macrophages,” PLoS ONE 9 (2014): e94188, https://doi.org/10.1371/journal.pone.0094188.
- 27C. H. Ladel, C. Blum, A. Dreher, K. Reifenberg, M. Kopf, and S. H. Kaufmann, “Lethal Tuberculosis in Interleukin-6-Deficient Mutant Mice,” Infection and Immunity 65 (1997): 4843–4849, https://doi.org/10.1128/iai.65.11.4843-4849.1997.
- 28O. el-Ahmady, M. Mansour, H. Zoeir, and O. Mansour, “Elevated Concentrations of Interleukins and Leukotriene in Response to Mycobacterium tuberculosis Infection,” Annals of Clinical Biochemistry 34, no. Pt 2 (1997): 160–164, https://doi.org/10.1177/000456329703400205.
- 29A. N. Gupte, P. Kumar, M. Araújo-Pereira, et al., “Baseline IL-6 Is a Biomarker for Unfavourable Tuberculosis Treatment Outcomes: A Multisite Discovery and Validation Study,” European Respiratory Journal 59 (2022): 2100905, https://doi.org/10.1183/13993003.00905-2021.
- 30W. Xiao, J. D. Klement, C. Lu, M. L. Ibrahim, and K. Liu, “IFNAR1 Controls Autocrine Type I IFN Regulation of PD-L1 Expression in Myeloid-Derived Suppressor Cells,” Journal of Immunology, Baltimore, MD 201 (2018): 264–277, https://doi.org/10.4049/jimmunol.1800129. 1950.
- 31N. Shaabani, V. Duhan, V. Khairnar, et al., “CD169+ macrophages Regulate PD-L1 Expression via Type I Interferon and Thereby Prevent Severe Immunopathology after LCMV Infection,” Cell Death & Disease 7 (2016): e2446, https://doi.org/10.1038/cddis.2016.350.
- 32M. Dupont, S. Rousset, T.-P. V. Manh, et al., “Dysregulation of the IFN-I Signaling Pathway by Mycobacterium Tuberculosis Leads to Exacerbation of HIV-1 Infection of Macrophages,” Journal of Leukocyte Biology 112 (2022): 1329–1342, https://doi.org/10.1002/JLB.4MA0422-730R.
- 33M. Dupont, S. Souriant, L. Balboa, et al., “Tuberculosis-associated IFN-I Induces Siglec-1 on Tunneling Nanotubes and Favors HIV-1 Spread in Macrophages,” Elife 9 (2020): e52535, https://doi.org/10.7554/eLife.52535.
- 34R. Lang, “Tuning of Macrophage Responses by Stat3-inducing Cytokines: Molecular Mechanisms and Consequences in Infection,” Immunobiology 210 (2005): 63–76, https://doi.org/10.1016/j.imbio.2005.05.001.
- 35E. Torrado, J. J. Fountain, R. T. Robinson, et al., “Differential and Site Specific Impact of B Cells in the Protective Immune Response to Mycobacterium Tuberculosis in the Mouse,” PLoS ONE 8 (2013): e61681, https://doi.org/10.1371/journal.pone.0061681.
- 36Z. Huang, Q. Luo, Y. Guo, et al., “Mycobacterium Tuberculosis-Induced Polarization of Human Macrophage Orchestrates the Formation and Development of Tuberculous Granulomas in Vitro,” PLoS ONE 10 (2015): e0129744, https://doi.org/10.1371/journal.pone.0129744.
- 37A. E. Abdalla, N. Lambert, X. Duan, and J. Xie, “Interleukin-10 Family and Tuberculosis: An Old Story Renewed,” International Journal of Biological Sciences 12 (2016): 710–717, https://doi.org/10.7150/ijbs.13881.
- 38H. C. Warsinske, E. Pienaar, J. J. Linderman, J. T. Mattila, and D. E. Kirschner, “Deletion of TGF-β1 Increases Bacterial Clearance by Cytotoxic T Cells in a Tuberculosis Granuloma Model,” Frontiers in Immunology 8 (2017): 1843, https://doi.org/10.3389/fimmu.2017.01843.
- 39R. García-Ferreras, J. Osuna-Pérez, G. Ramírez-Santiago, et al., “Bacteria-instructed B Cells Cross-prime Naïve CD8+ T Cells Triggering Effective Cytotoxic Responses,” Embo Reports 24 (2023): e56131, https://doi.org/10.15252/embr.202256131.
- 40A. Riccomi and C. B. Palma, “Cells and Programmed Death-Ligand 2 Signaling Are Required for Maximal Interferon-γ Recall Response by Splenic CD4+ Memory T Cells of Mice Vaccinated with Mycobacterium Tuberculosis Ag85B,” PLoS ONE 10 (2015): e0137783, https://doi.org/10.1371/journal.pone.0137783.
- 41A. C. Lino, V. D. Dang, V. Lampropoulou, et al., “LAG-3 Inhibitory Receptor Expression Identifies Immunosuppressive Natural Regulatory Plasma Cells,” Immunity 49 (2018): 120–133.e9, https://doi.org/10.1016/j.immuni.2018.06.007.
- 42P. Neves, V. Lampropoulou, E. Calderon-Gomez, et al., “Signaling via the MyD88 Adaptor Protein in B Cells Suppresses Protective Immunity during Salmonella Typhimurium Infection,” Immunity 33 (2010): 777–790, https://doi.org/10.1016/j.immuni.2010.10.016.
- 43V. Lampropoulou, K. Hoehlig, T. Roch, et al., “TLR-activated B Cells Suppress T Cell-mediated Autoimmunity,” Journal of Immunology, Baltimore, MD 180 (2008): 4763–4773, https://doi.org/10.4049/jimmunol.180.7.4763. 1950.
- 44L. Kozakiewicz, Y. Chen, J. Xu, et al., “B Cells Regulate Neutrophilia during Mycobacterium Tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response,” Plos Pathogens 9 (2013): e1003472, https://doi.org/10.1371/journal.ppat.1003472.
- 45P. J. Maglione, J. Xu, A. Casadevall, and J. Chan, “Fc Gamma Receptors Regulate Immune Activation and Susceptibility during Mycobacterium Tuberculosis Infection,” Journal of Immunology, Baltimore, MD 180 (2008): 3329–3338, https://doi.org/10.4049/jimmunol.180.5.3329. 1950.
- 46L. Daniel, N. D. Bhattacharyya, C. Counoupas, et al., “Stromal Structure Remodeling by B Lymphocytes Limits T Cell Activation in Lymph Nodes of Mycobacterium Tuberculosis-infected Mice,” Journal of Clinical Investigation 132 (2022): e157873, https://doi.org/10.1172/JCI157873.
- 47R. V. Swanson, A. Gupta, T. W. Foreman, et al., “Antigen-specific B Cells Direct T Follicular-Like Helper Cells into Lymphoid Follicles to Mediate Mycobacterium Tuberculosis Control,” Nature Immunology 24 (2023): 855–868, https://doi.org/10.1038/s41590-023-01476-3.
- 48R. Upadhyay, A. Sanchez-Hidalgo, C. J. Wilusz, et al., “Host Directed Therapy for Chronic Tuberculosis via Intrapulmonary Delivery of Aerosolized Peptide Inhibitors Targeting the IL-10-STAT3 Pathway,” Scientific Reports 8 (2018): 16610, https://doi.org/10.1038/s41598-018-35023-0.
- 49P. Tucci, M. Portela, C. R. Chetto, G. González-Sapienza, and M. Marín, “Integrative Proteomic and Glycoproteomic Profiling of Mycobacterium Tuberculosis Culture Filtrate,” PLoS ONE 15 (2020): e0221837, https://doi.org/10.1371/journal.pone.0221837.