MOCVD of TiO2 Thin Films using a Heteroleptic Titanium Complex: Precursor Evaluation and Investigation of Optical, Photoelectrochemical and Electrical Properties†
Manish Banerjee
Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorVan-Son Dang
Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorMichal Bledowski
Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorRadim Beranek
Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorHans-Werner Becker
Central Unit for Ion Beams and Radionuclides (RUBION), Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorDetlef Rogalla
Central Unit for Ion Beams and Radionuclides (RUBION), Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorEugen Edengeiser
Physical Chemistry II, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorMartina Havenith
Physical Chemistry II, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorAndreas D. Wieck
Applied Solid State Physics, Ruhr-University, Bochum 44801, Bochum (Germany)
Materials Research Department, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorCorresponding Author
Anjana Devi
Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum 44801, Bochum (Germany)
Materials Research Department, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorManish Banerjee
Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorVan-Son Dang
Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorMichal Bledowski
Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorRadim Beranek
Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorHans-Werner Becker
Central Unit for Ion Beams and Radionuclides (RUBION), Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorDetlef Rogalla
Central Unit for Ion Beams and Radionuclides (RUBION), Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorEugen Edengeiser
Physical Chemistry II, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorMartina Havenith
Physical Chemistry II, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorAndreas D. Wieck
Applied Solid State Physics, Ruhr-University, Bochum 44801, Bochum (Germany)
Materials Research Department, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorCorresponding Author
Anjana Devi
Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr-University, Bochum 44801, Bochum (Germany)
Materials Research Department, Ruhr-University, Bochum 44801, Bochum (Germany)
Search for more papers by this authorAbstract
A new heteroleptic titanium precursor with a mixed oxygen/nitrogen coordination sphere [Ti(dmap)2(NMe2)2] (Hdmap = 1–dimethylamino–2–propanol) is synthesized by a simple elimination reaction on tetrakis–dimethylaminotitanium(IV) [Ti(NMe2)4]. The compound shows encouraging results in terms of chemical and thermal stability compared to the parent alkyl amide [Ti(NMe2)4], and is therefore more suitable for MOCVD applications. TiO2 thin films are grown on Si(100) and ITO-coated borosilicate glass substrates via MOCVD in the temperature range 500–800°C. The deposition temperature has a significant effect on the phase and microstructure of the TiO2 films obtained, which influences the functional properties. The optical bandgaps of the films are in the range 2.92–3.36 eV. The best photocurrent response (1.5 mA cm−2 under AM 1.5G conditions) in aqueous electrolytes is observed for films grown at 700°C having improved crystallinity and porous columnar structure.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cvde201407125-sm-0001-SuppFig-S1.docx745.9 KB | Supporting Figures |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 S. K. Kim, G.-J. Choi, S. Y. Lee, M. Seo, S. W. Lee, J. H. Han, H.-S. Ahn, S. Han, C. S. Hwang, Adv. Mater. 2008, 20, 1429.
- 2 H. Yang, S. Zhu, N. Pan, J. Appl. Polym. Sci. 2004, 92, 3201.
- 3 Y.-K. Kim, D.-H. Min, Nanoscale 2013, 5, 3638.
- 4 A. Tricoli, A. S. Wallerand, M. Righettoni, J. Mater. Chem. 2012, 22, 14254.
- 5 C. Martinet, V. Paillard, A. Gagnaire, J. Joseph, J. Non-Cryst. Solids 1997, 216, 77.
- 6 B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani, E.-K. Suh, Mater. Charact. 2007, 58, 680.
- 7 A. Fujishima, K. Honda, Nature 1972, 238, 37.
- 8 A. L. Linsebigler, G. Lu, J. T. Yates, Jr, Chem. Rev. 1995, 95, 735.
- 9 D.-J. Won, C.-H. Wang, H.-K. Jang, D.-J. Choi, Appl. Phys. A 2001, 73, 595.
- 10 D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodly, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwoo, A. Walsh, A. A. Sokol, Nat. Mater. 2013, 12, 798.
- 11 N. Daude, C. Gout, C. Jouanin, Phys Rev. B 1977, 15, 3229.
- 12 H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, F. Levy, J. Appl. Phys. 1994, 75, 2042.
- 13 G. S. Brady, H. R. Clauser, Materials Handbook, 13th ed. McGraw–Hill, New York 1991.
- 14 T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Appl. Catal, A 2003, 244, 383.
- 15 C. Xu, R. Killmeyer, M. L. Gray, S. U. M. Khan, Electrochem. Commun. 2006, 8, 1650.
- 16 E. M. Neville, M. J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J. M. D. MacElroy, J. A. Sullivan, K. R. Thampi, J. Phys. Chem. C 2012, 116, 16511.
- 17 D. C. Hurum, A. G. Agrios, K. A. Gray, J. Phys. Chem. B 2003, 107, 4545.
- 18
T. Kawahara,
Y. Konishi,
H. Tada,
N. Tohge,
J. Nishii,
S. Ito,
Angew. Chem.
2002,
114, 2945.
10.1002/1521-3757(20020802)114:15<2935::AID-ANGE2935>3.0.CO;2-6 Google Scholar
- 19 R. Wasielewski, J. Domaradzki, D. Wojcieszak, D. Kaczmarek, A. Borkowska, E. L. Prociow, A. Ciszewski, Appl. Surf. Sci. 2008, 254, 4396.
- 20 L. Kavan, M. Gratzel, Electrochim. Acta 1995, 40, 643.
- 21 O. Duyar, F. Placido, H. Z. Durusoy, J. Phys. D: Appl. Phys. 2008, 41, 095307.
- 22 T. Wen, J. Gao, J. Shen, Z. Zhou, J. Mater. Sci. 2001, 36, 5923.
- 23 J. Aarik, A. Aidla, T. Uustare, V. Sammelselg, J. Cryst. Growth 1995, 148, 268.
- 24 S. J. Kim, K. Xu, H. Parala, R. Beranek, M. Bleowski, K. Sliozberg, H.-W. Becker, D. Rogalla, D. Barreca, C. Maccato, C. Sada, W. Schuhmann, R. A. Fischer, A. Devi, Chem. Vap. Deposition 2013, 19, 45.
- 25 R. Bhakta, R. Thomas, F. Hipler, H. F. Bettinger, J. Muller, P. Ehrhart, A. Devi, J. Mater. Chem. 2004, 14, 3231.
- 26 R. N. Ghostagore, A. J. Noreika, J. Electrochem. Soc. 1970, 117, 1310.
- 27 C. J. Taylor, D. C. Gilmer, D. G. Colombo, G. D. Wilk, S. A. Campbell, J. Roberts, W. L. Gladfelter, J. Am. Chem. Soc. 1999, 121, 5220.
- 28 M. Balog, M. Schieber, S. Patai, M. Michman, J. Cryst. Growth 1972, 17, 298.
- 29 A. E. Turgambaeva, V. V. Krisyuk, S. V. Sysoev, I. K. Igumenov, Chem. Vap. Deposition 2001, 7, 121.
- 30 B.-J. Bae, K. Lee, W. S. Seo, M. A. Miah, K.-C. Kim, J. T. Park, Bull. Korean Chem. Soc. 2004, 25, 1661.
- 31 J. B. Woods, D. B. Beach, C. L. Nygren, Z.-L. Xue, Chem. Vap. Deposition 2005, 11, 289.
- 32 G. T. Lim, D.-H. Kim, Thin Solid Films 2006, 498, 254.
- 33 A. Devi, M. Hellwig, D. Barreca, H. Parala, R. Thomas, H.-W , Becker, R. S. Katiyar, R. Fischer, E. Tondello, Chem. Vap. Deposition, 2010, 16, 157.
- 34 S. Lim, B. Choi, Y. S. Min, D. Kim, I. Yoon, S. S. Lee, J. Organomet. Chem. 2004, 689, 224.
- 35 K. Black, A. C. Jones, J. Bacsa, P. R. Chalker, P. A. Marshall, H. O. Davies, P. N. Heys, P. O'Brien, M. Afzaal, J. Raftery, G. W. Critchlow, Chem. Vap. Deposition 2010, 16, 93.
- 36 A. C. Jones, T. J. Leedham, P. J. Wright, M. J. Crosbie, K. A. Fleeting, D. J. Otway, P. O'Brien, M. E. Pemble, J. Mater. Chem. 1998, 8, 1773.
- 37
E. Rytter,
O. Nirisen,
M. Ystenes,
H. A. Oye,
Microchim. Acta [Wien]
1988,
II, 85.
10.1007/BF01349726 Google Scholar
- 38 D. Horley, E. G. Torrible, Can. J. Chem. 1965, 43, 3201.
- 39 O. J. Bchir, K. M. Green, H. M. Ajmera, E. A. Zapp, T. J. Anderson, B. C. Brooks, L. L. Reitfort, D. H. Powell, K. A. Abboud, L. McElwee-White, J. Am. Chem. Soc. 2005, 127, 7825.
- 40 P. Scherrer, Gottinger Nachr. Math. Phys. 1918, 2, 98.
- 41 T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 1978, 7, 321.
- 42 I. P. Parkin, R. G. Palgrave, J. Mater. Chem. 2005, 15, 1689.
- 43 R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 2004, 108, 10617.
- 44 A. B. D. Cassie, S. Baxter, Trans. Faraday Soc. 1944, 40, 546.
- 45 Y. C. Lee, Y. P. Hong, H. Y. Lee, H. Kim, Y. J. Jung, K. H. Ko, H. S. Jung, K. S. Hong, J. Colloid Interface Sci. 2003, 267, 127.
- 46 M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 2002, 14, 2812.
- 47 H. Y. Lee, Y. H. Park, K. H. Ko, Langmuir 2000, 16, 7289.
- 48 J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 1966, 15, 627.
- 49 N. Ghrairi, M. Bouaicha, Nanoscale Res. Lett. 2012, 7, 357.
- 50 M. Xu, Y. Gao, E. M. Moreno, M. Kunst, M. Muhler, Y. Wang, H. Idriss, C. Wöll, Phys. Rev. Lett. 2011, 106, 138302.
- 51 L-B. I, C. Shi, X.-S. Li, J.-L. Liu, A.-M. Zhu, Chem. Vap. Deposition 2012, 18, 309.
- 52
R. Beranek,
Adv. Phys. Chem.
2011, 786759, DOI: 10.1155/2011/786759.
10.1155/2011/786759 Google Scholar
- 53 L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz, H. J. Scheel, J. Am. Chem. Soc. 1996, 118, 6716.
- 54 Y. Masuda, Y. Jinbo, K. Koumoto, Sci. Adv. Mater. 2009, 1, 138.
- 55 D. C. Bradley, I. M. Thomas, J. Am. Chem. Soc. 1960, 3857.
- 56 A. Devi, W. Rogge, A. Wohlfart, F. Hipler, H.-W. Becker, R. A. Fischer, Chem. Vap. Deposition 2000, 6, 245.
- 57 E. Kotai, Nucl. Instrum. Methods Phys. Res, B 1994, 85, 588.