Utilizing signal flow graph on multiple feedback amplifiers of NMC and DACFC with emphasis on design space exploration and conversion
Masume Ghashghai
Department of Electrical Engineering, Shahed University, Tehran, Iran
Search for more papers by this authorCorresponding Author
Mohammad Bagher Ghaznavi-Ghoushchi
Department of Electrical Engineering, Shahed University, Tehran, Iran
Correspondence
Mohammad Bagher Ghaznavi-Ghoushchi, Department of Electrical Engineering, Shahed University, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorMasume Ghashghai
Department of Electrical Engineering, Shahed University, Tehran, Iran
Search for more papers by this authorCorresponding Author
Mohammad Bagher Ghaznavi-Ghoushchi
Department of Electrical Engineering, Shahed University, Tehran, Iran
Correspondence
Mohammad Bagher Ghaznavi-Ghoushchi, Department of Electrical Engineering, Shahed University, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorSummary
Over a long time, different methods of frequency compensation of multistage amplifiers have been exploited for improvement in the behavior of stabilizing. In the present paper, the step-by-step conversion process of the dual active capacitive feedback compensation (DACFC) three-stage amplifier into the nested Miller compensation (NMC) three-stage amplifier is presented by a systematic approach and signal flow graphs (SFGs) based on the graph theory rules in graph domain. Also, according to graph rules, the conversion of the multiple feedback amplifier NMC into the multiple feedback amplifier DACFC is investigated in detail in the graph domain. During the conversion process, the difference in the gain-bandwidth product (GBW) in the two mentioned case study's amplifiers is examined in terms of the graph at the system level. The elimination of two branches in one step of the conversion process of the SFG of the NMC into the SFG of the DACFC leads to a significant improvement in the behavior of GBW. This paper also conducts verification of the design of conventional NMC and DACFC amplifier circuits in HSPICE using 0.35-μm CMOS technology and compares the circuit simulation results to SFG simulation results. In order to show the correctness of the idea, they are redesigned in HSPICE using 0.18-μm CMOS technology, and appropriate results are obtained.
Open Research
DATA AVAILABILITY STATEMENT
The datasets generated and/or analyzed during the current paper are available from the corresponding author upon reasonable request.
REFERENCES
- 1Huang W-J, Nagayasu S, Liu S-I. A rail-to-rail class-B buffer with DC level-shifting current mirror and distributed miller compensation for LCD column drivers. IEEE Trans Circuit Syst I: Reg Pap. 2011; 58(8): 1761-1772. doi:10.1109/TCSI.2011.2106053
- 2Dhanasekaran V, Silva-Martinez J, Sanchez-Sinencio E. Design of three-stage class-AB 16 Ω headphone driver capable of handling wide range of load capacitance. IEEE J Solid-State Circuits. 2009; 44(6): 1734-1744. doi:10.1109/JSSC.2009.2020461
- 3Ho M, Guo J, Mak KH, et al. A CMOS low-dropout regulator with dominant-pole substitution. IEEE Trans Power Electron. 2015; 31: 6362-6371.
- 4Wu J, Fedder GK, Carley LR. A low-noise low-offset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer. IEEE J Solid-State Circuit. 2004; 39(5): 722-730. doi:10.1109/JSSC.2004.826329
- 5Marano D, Grasso AD, Palumbo G, Pennisi S. Optimized active single-Miller capacitor compensation with inner half-feedforward stage for very high-load three-stage OTAs. IEEE Trans Circuit Syst I: Reg Pap. 2016; 63(9): 1349-1359. doi:10.1109/TCSI.2016.2573920
- 6Riad J, Estrada-López JJ, Padilla-Cantoya I, Sánchez-Sinencio E. Power-scaling output-compensated three-stage OTAs for wide load range applications. IEEE Trans Circuit Syst I: Reg Pap. 2020; 67(7): 2180-2192. doi:10.1109/TCSI.2020.2978515
- 7Riad J, Estrada-López JJ, Sánchez-Sinencio E. Classification and design space exploration of low-power three-stage operational transconductance amplifier architectures for wide load ranges. Electronics. 2019; 8(11): 1268. doi:10.3390/electronics8111268
- 8You F, Embabi SH, Sanchez-Sinencio E. Multistage amplifier topologies with nested G/sub m/-C compensation. IEEE J Solid-State Circuit. 1997; 32(12): 2000-2011. doi:10.1109/4.643658
- 9Mita R, Palumbo G, Pennisi S. Design guidelines for reversed nested Miller compensation in three-stage amplifiers. IEEE Trans Circuit Syst II: Anal Dig Signal Process. 2003; 50: 227-233.
- 10Leung KN, Mok PK, Ki W-H, Sin JK. Three-stage large capacitive load amplifier with damping-factor-control frequency compensation. IEEE J Solid-State Circuit. 2000; 35(2): 221-230. doi:10.1109/4.823447
- 11Lee H, Mok PK. Active-feedback frequency-compensation technique for low-power multistage amplifiers. IEEE J Solid-State Circuit. 2003; 38(3): 511-520. doi:10.1109/JSSC.2002.808326
- 12Lee H, Leung KN, Mok PK. A dual-path bandwidth extension amplifier topology with dual-loop parallel compensation. IEEE J Solid-State Circuit. 2003; 38(10): 1739-1744. doi:10.1109/JSSC.2003.817597
- 13Peng X, Sansen W. AC boosting compensation scheme for low-power multistage amplifiers. IEEE J Solid-State Circuit. 2004; 39(11): 2074-2079. doi:10.1109/JSSC.2004.835811
- 14Peng X, Sansen W. Transconductance with capacitances feedback compensation for multistage amplifiers. IEEE J Solid-State Circuit. 2005; 40(7): 1514-1520. doi:10.1109/JSSC.2005.847216
- 15Fan X, Mishra C, Sánchez-Sinencio E. Single Miller capacitor frequency compensation technique for low-power multistage amplifiers. IEEE J Solid-State Circuit. 2005; 40: 584-592.
- 16Peng X, Sansen W, Hou L, Wang J, Wu W. Impedance adapting compensation for low-power multistage amplifiers. IEEE J Solid-State Circuit. 2010; 46: 445-451.
- 17Guo S, Lee H. Dual active-capacitive-feedback compensation for low-power large-capacitive-load three-stage amplifiers. IEEE J Solid-State Circuit. 2010; 46(2): 452-464. doi:10.1109/JSSC.2010.2092994
- 18Tan M, Ki W-H. A cascode Miller-compensated three-stage amplifier with local impedance attenuation for optimized complex-pole control. IEEE J Solid-State Circuit. 2014; 50: 440-449.
- 19Aminzadeh H, Dashti A. Hybrid cascode compensation with current amplifiers for nano-scale three-stage amplifiers driving heavy capacitive loads. Analog Integr Circuits Signal Process. 2015; 83(3): 331-341. doi:10.1007/s10470-015-0522-2
- 20Liao P, Zhang Y, Liu L. Single capacitor with embedded current amplifier compensation for three-stage amplifier with large capacitive loads, in 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 2015; 305-308.
- 21Qin C, Zhang L, Zhou C, Zhang L, Wang Y, Yu Z. Dual AC boosting compensation scheme for multistage amplifiers. IEEE Trans Circuits Syst II Express Briefs. 2016; 64: 882-886.
- 22Haibi H, Akita I, Ishida M. A 27-nV/√ Hz 0.015-mm 2 three-stage operational amplifier with split active-feedback compensation, in 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2013; 365-368.
- 23Cheng Q, Li W, Tang X, Guo J. Design and analysis of three-stage amplifier for driving pF-to-nF capacitive load based on local Q-factor control and cascode Miller compensation techniques. Electronics. 2019; 8(5): 572. doi:10.3390/electronics8050572
- 24Rezaei I, Zanjani MS, Khani AAM, Biabanifard A. Single Miller frequency compensation: three stage CMOS. Memories-Mater Device Circui Syst. 2023; 4:100037. doi:10.1016/j.memori.2023.100037
10.1016/j.memori.2023.100037 Google Scholar
- 25Chandra P, Bansal U. A differential block and NCG cell based four stage CMOS amplifier. J Eng Res. 2023; 11(1):100021. doi:10.1016/j.jer.2023.100021
- 26Grasso AD, Palumbo G, Pennisi S, Sansen W. The noise performance of CMOS Miller operational transconductance amplifiers with embedded current-buffer frequency compensation. Int J Circuit Theory Appl. 2017; 45(4): 457-465. doi:10.1002/cta.2273
- 27Aminzadeh H, Colombo DM. Analysis and design procedures of CMOS OTAs based on settling time. J Integr Circuit Syst. 2022; 17(1): 1-11. doi:10.29292/jics.v17i1.590
10.29292/jics.v17i1.590 Google Scholar
- 28Pugliese A, Amoroso FA, Cappuccino G, Cocorullo G. Settling time optimization for three-stage CMOS amplifier topologies. IEEE Trans Circuit Syst I: Reg Pap. 2009; 56(12): 2569-2582. doi:10.1109/TCSI.2009.2017133
- 29Marano D, Palumbo G, Pennisi S. Step-response optimization techniques for low-power three-stage operational amplifiers for large capacitive load applications, in 2009 IEEE International Symposium on Circuits and Systems, 2009; 1949-1952.
- 30Ochoa A. A systematic approach to the analysis of general and feedback circuits and systems using signal flow graphs and driving-point impedance. IEEE Trans Circuit Syst II: Anal Dig Signal Process. 1998; 45(2): 187-195. doi:10.1109/82.661648
10.1109/82.661648 Google Scholar
- 31Lundberg KH. Internal and external op-amp compensation: a control-centric tutorial, in Proceedings of the 2004 American Control Conference, 2004; 5197-5211.
- 32Grasso AD, Marano D, Pennisi S, Vazzana G. Symbolic factorization methodology for multistage amplifier transfer functions. Int J Circuit Theory Appl. 2016; 44(1): 38-59. doi:10.1002/cta.2061
- 33Aminzadeh H. Evaluation of the pole expressions of nano-scale multistage amplifiers based on equivalent output impedance. AEU Int J Electron Commun. 2017; 72: 243-251. doi:10.1016/j.aeue.2016.12.014
- 34Shi G. Topological approach to symbolic pole–zero extraction incorporating design knowledge. IEEE Trans Comput-Aided Des Integr Circuit Syst. 2017; 36(11): 1765-1778. doi:10.1109/TCAD.2017.2664065
- 35Aminzadeh H, Grasso AD, Palumbo G. A methodology to derive a symbolic transfer function for multistage amplifiers. IEEE Access. 2022; 10: 14062-14075. doi:10.1109/ACCESS.2022.3147879
- 36Phang KS. CMOS optical preamplifier design using graphical circuit analysis: University of Toronto, 2001.
- 37 Signal-Flow_Graphs.pdf. Accessed February 10, 2024. https://www.fer.unizg.hr/_download/repository/Signal-Flow_Graphs.pdf
- 38Mason SJ, Zimmermann HJ. Electronic Circuits, Signals, and Systems vol. 60005601. Wiley New York; 1960.
- 39Schmid H. Circuit transposition using signal-flow graphs, in 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No. 02CH37353), 2002; II-II.
- 40Ki W-H. Signal flow graph analysis of feedback amplifiers. IEEE Trans Circuit Syst I: Fund Theory Appl. 2000; 47: 926-933.
- 41Schmid H, Huber A. Analysis of switched-capacitor circuits using driving-point signal-flow graphs. Analog Integr Circuits Signal Process. 2018; 96(3): 495-507. doi:10.1007/s10470-018-1131-7
- 42Yamamoto N, Tsuji T, Murase M, Urakabe K, Yoshimura T. Decomposition of frequency response functions into paths. Mech Syst Signal Process. 2022; 166:108457. doi:10.1016/j.ymssp.2021.108457
- 43Youssef M, Chong E, Phang K. Distortion analysis using signal flow graphs and Volterra series, in 2003 46th Midwest Symposium on Circuits and Systems, 2003; 84-89.
- 44Gross JL, Yellen J. Handbook of Graph Theory. CRC press; 2003. doi:10.1201/9780203490204
10.1201/9780203490204 Google Scholar
- 45Moschytz GS. Analog Circuit Theory and Filter Design in the Digital World: With an Introduction to the Morphological Method for Creative Solutions and Design. Springer; 2019. doi:10.1007/978-3-030-00096-7
10.1007/978-3-030-00096-7 Google Scholar
- 46Huijsing JH. Multi-stage amplifier with capacitive nesting for frequency compensation, US Pat Appl Ser. No. 602.234, filed Apiil 19, 1984., ed.
- 47Leung KN, Mok PK. Nested Miller compensation in low-power CMOS design. IEEE Trans Circuit Syst II: Anal Dig Signal Process. 2001; 48: 388-394.