Memristor-based logic gate and its application in pulse train controlled Buck converter
Zhaokun Li
School of Electrical Engineering, China University of Mining and Technology, Xuzhou, China
Search for more papers by this authorCorresponding Author
Dongsheng Yu
School of Electrical Engineering, China University of Mining and Technology, Xuzhou, China
Correspondence
Dongsheng Yu, School of Electrical and Power Engineering, China University of Mining and Technology, 1 University Road, Xuzhou 221116, China.
Email: [email protected]
Search for more papers by this authorZongbin Ye
School of Electrical Engineering, China University of Mining and Technology, Xuzhou, China
Search for more papers by this authorHerbert H. C. Iu
School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
Search for more papers by this authorTyrone Fernando
School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
Search for more papers by this authorZhaokun Li
School of Electrical Engineering, China University of Mining and Technology, Xuzhou, China
Search for more papers by this authorCorresponding Author
Dongsheng Yu
School of Electrical Engineering, China University of Mining and Technology, Xuzhou, China
Correspondence
Dongsheng Yu, School of Electrical and Power Engineering, China University of Mining and Technology, 1 University Road, Xuzhou 221116, China.
Email: [email protected]
Search for more papers by this authorZongbin Ye
School of Electrical Engineering, China University of Mining and Technology, Xuzhou, China
Search for more papers by this authorHerbert H. C. Iu
School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
Search for more papers by this authorTyrone Fernando
School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
Search for more papers by this authorFunding information: Fundamental Research Funds for the Central Universities, Grant/Award Number: 2019XKQYMS36; National Natural Science Foundation of China, Grant/Award Number: 51977208
Abstract
Memristor (MR) has attractive characteristics of nanoscale volume and low-power dissipation and hence possesses superiorities in designing integrated-circuits. In this paper, a flux-controlled binary MR emulator is proposed and discussed by detailing its constitutive mathematical relation between memristance and magnetic flux. MR based logical gates are then constructed and applied to pulse train (PT) controlled Buck converters to improve its output voltage response performance. In order to suppress low-frequency voltage oscillation of PT controlled Buck converters in continuous conduction mode (CCM), inductor current based PT (IC-PT) control method using the MR-based logic gates is newly proposed and analyzed. The sampled simulation and experimental results reveals that the IC-PT controlled Buck converter by utilizing MR based logic gates can achieve fast transient response and minimized low-frequency voltage oscillation in CCM mode.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1Chua L. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory. 1971; 18(5): 507-519. doi:10.1109/TCT.1971.1083337
- 2Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature. 2008; 453(7191): 80-83. doi:10.1038/nature06932
- 3Chen M, Sun M, Bao H, Hu Y, Bao B. Flux–charge analysis of two-memristor-based Chua's circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Transactions on Industrial Electronics. 2019; 67(3): 2197-2206. doi:10.1109/TIE.2019.2907444
- 4Kim KM, Williams RS. A Family of Stateful memristor gates for complete cascading logic. IEEE Transactions on Circuits and Systems I: Regular Papers. 2019; 66(11): 4348-4355. doi:10.1109/TCSI.2019.2926811
- 5Sung C, Hwang H, Yoo IK. Perspective: A review on memristive hardware for neuromorphic computation. J Appl Phys. 2018; 124(15):151903. doi:10.1063/1.5037835
- 6Bao H, Hu A, Liu W, Bao B. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold Electromagnetic induction. IEEE Transactions on Neural Networks and Learning Systems. 2020; 21(2): 502-511. doi:10.1109/TNNLS.2019.2905137
- 7Li K, Bao H, Li H, Ma J, Hua Z, Bao B. Memristive Rulkov neuron model with magnetic induction effects. IEEE Transactions on Industrial Informatics. 2022; 18(3): 1726-1736. doi:10.1109/TII.2021.3086819
- 8Ascoli A, Corinto F, Senger V, Tetzlaff R. Memristor model comparison. IEEE Circuits and Systems Magazine. 2013; 13(2): 89-105. doi:10.1109/MCAS.2013.2256272
- 9Sun J, Yao L, Zhang X, Wang Y, Cui G. Generalised mathematical model of memristor. IET Circuits, Devices & Systems. 2016; 10(3): 244-249. doi:10.1049/iet-cds.2014.0381
- 10Yakopcic C, Taha TM, Subramanyam G, Pino RE, Rogers S. A memristor device model. IEEE Electron Device Letters. 2011; 32(10): 1436-1438. doi:10.1109/LED.2011.2163292
- 11Peng Y, Sun K, He S. A discrete memristor model and its application in Hénon map. Chaos, Solitons & Fractals. 2020; 137:109873. doi:10.1016/j.chaos.2020.109873
- 12Han B, Hua Z, Li H, Chen M, Bao B. Discrete memristor hyperchaotic maps. IEEE Transactions on Circuits and Systems I: Regular Papers. 2021; 68(11): 4534-4544. doi:10.1109/TCSI.2021.3082895
- 13Batas D, Fiedler H. A Memristor SPICE Implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Transactions on Nanotechnology. 2011; 10(2): 250-255. doi:10.1109/TNANO.2009.2038051
- 14Xu KD, Zhang YH, Wang L, et al. Two Memristor SPICE models and their applications in microwave devices. IEEE Transactions on Nanotechnology. 2014; 13(3): 607-616. doi:10.1109/TNANO.2014.2314126
- 15Wang X, Fitch AL, Iu HHC, Sreeram V, Qi W. Implementation of an analogue model of a memristor based on a light-dependent resistor. Chinese Physics B. 2012; 21(10): 500-507. doi:10.1088/1674-1056/21/10/108501
- 16Yu D, Iu HHC, Liang Y, Fernando T, Chua L. Dynamic behavior of coupled memristor circuits. IEEE Transactions on Circuits and Systems I: Regular Papers. 2015; 62(6): 1607-1612. doi:10.1109/TCSI.2015.2418836
- 17Borghetti J, Snider GS, Kuekes PJ, Yang JJ, Stewart DR, Williams RS. Memristive switches enable “stateful” logic operations via material implication. Nature. 2010; 464(7290): 873-876. doi:10.1038/nature08940
- 18Guckert L, Swartzlander EE. MAD gates-Memristor logic design using driver circuitry. IEEE Transactions on Circuits and Systems II: Express Briefs. 2016; 64(2): 171-175.
- 19Bickerstaff K, Swartzlander E. Memristor based arithmetic. In: Proc. 44th Asilomar Conference on Signals, Systems & Computers. Pacific Grove, CA, USA; 2010: 1173-1177.
10.1109/ACSSC.2010.5757715 Google Scholar
- 20Shaltoot A, Madian A. Memristor based carry look ahead adder architectures. In: Proc. 55th International Midwest Symposium on Circuits and Systems (MWSCAS). Boise, ID, USA; 2012: 298-301.
- 21Ahmad K, Abdalhossein R. Novel design for a memristor-based full adder using a new IMPLY logic approach. J Comput Electron. 2018; 17(3): 1303-1314. doi:10.1007/s10825-018-1198-5
- 22Rohani S, Taherinejad N, Radakovits D. A semiparallel full-adder in IMPLY logic. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2020; 28(1): 297-301. doi:10.1109/TVLSI.2019.2936873
- 23Guckert L, Swartzlander E. Optimized memristor-based multipliers. IEEE Transactions on Circuits and Systems I: Regular Papers. 2017; 64(2): 373-385. doi:10.1109/TCSI.2016.2606433
- 24Haghiri S, Nemati A, Feizi S, et al. A memristor based binary multiplier. In: Proc. 30th Canadian Conference on Electrical and Computer Engineering (CCECE). Windsor, ON, Canada; 2017: 1-4.
10.1109/CCECE.2017.7946783 Google Scholar
- 25Radakovits D, Taherinejad N, Cai M, et al. A memristive multiplier using semi- serial IMPLY based adder. IEEE Transactions on Circuits and Systems I. 2020; 67(5): 1495-1506. doi:10.1109/TCSI.2020.2965935
- 26Guckert L, Swartzlander E. Optimized memristor-based ripple carries adders. In: Proc. 50th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA; 2016: 1575-1579.
10.1109/ACSSC.2016.7869644 Google Scholar
- 27Kvatinsky S, Belousov D, Liman S, et al. MAGIC—Memristor-aided logic. IEEE Transactions on Circuits and Systems II: Express Briefs. 2014; 61(11): 895-899. doi:10.1109/TCSII.2014.2357292
- 28Talati N, Gupta S, Mane P, Kvatinsky S. Logic design within memristive memories using memristor aided logic (MAGIC). IEEE Transactions on Nanotechnology. 2016; 15(4): 635-650. doi:10.1109/TNANO.2016.2570248
- 29Gao L, Alibart F, Strukov DB. Programmable CMOS/memristor threshold logic. IEEE Transactions on Nanotechnology. 2013; 12(2): 115-119. doi:10.1109/TNANO.2013.2241075
- 30Siemon A, Menzel S, Waser R, Linn E. A complementary resistive switch-based crossbar array adder. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2015; 5(1): 64-74. doi:10.1109/JETCAS.2015.2398217
- 31Kvatinsky S, Wald N, Satat G, Friedman EG, Kolodny A, Weiser UC. MRL-Memristor ratioed logic. In: Proc. 13rd International Cellular Nanoscale Networks and their Applications. Turin, Italy; 2012: 1-6.
- 32Lee S, Park B, Cho S, et al. Memristor-CMOS reconfigurable multiplier architecture. In: Proc. 14th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA). Notre Dame IN, USA; 2014: 1-2.
10.1109/CNNA.2014.6888653 Google Scholar
- 33Teimoory M, Amirsoleimani A, Ahmadi A, et al. A hybrid memristor-CMOS multiplier design based on memristive universal logic gates. In: Proc. 60th International Midwest Symposium on Circuits and Systems (MWSCAS). Boston, MA, USA; 2017: 1422-1425.
10.1109/MWSCAS.2017.8053199 Google Scholar
- 34Baek S, Eshraghian J, Ahn S, et al. A memristor-CMOS braun multiplier array for arithmetic pipelining. In: Proc. 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Genoa, Italy; 2019: 735-738.
10.1109/ICECS46596.2019.8964710 Google Scholar
- 35Vourkas I, Sirakoulis GC. A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Transactions on Nanotechnology. 2012; 11(6): 1151-1159. doi:10.1109/TNANO.2012.2217153
- 36Papandroulidakis G, Vourkas I, Vasileiadis N, Sirakoulis GC. Boolean logic operations and computing circuits based on memristors. IEEE Transactions on Circuits and Systems II: Express Briefs. 2014; 61(2): 972-976. doi:10.1109/TCSII.2014.2357351
- 37Khalid M, Singh J. Memristor based unbalanced ternary logic gates. Analog Integr Circuits Signal Process. 2016; 87(3): 399-406. doi:10.1007/s10470-016-0733-1
- 38Yu D, Iu HHC, Fitch AL, Liang Y. A floating memristor emulator based relaxation oscillator. IEEE Transactions on Circuits and Systems I: Regular Papers. 2014; 61(10): 2888-2896. doi:10.1109/TCSI.2014.2333687
- 39Li D, Zhang J, Yu D, et al. A family of binary memristor-based low-pass filters with controllable cut-off frequency. IEEE Access. 2020; 8: 60199-60209. doi:10.1109/ACCESS.2020.2982977
- 40Liang Y, Lu Z, Wang G, Yu D, Iu HHC. Threshold-type binary memristor emulator circuit. IEEE Access. 2019; 7: 180181-180193. doi:10.1109/ACCESS.2019.2957371
- 41Noori A, Farsi M, Esfanjani RM. Design and implementation of a robust switching strategy for DC/DC converters. IET Power Electron. 2016; 9(2): 316-322. doi:10.1049/iet-pel.2014.0749
- 42Maity S, Sahu PK. Modeling and analysis of a fast and robust module-integrated analog photovoltaic MPP tracker. IEEE Trans Power Electron. 2016; 31(1): 280-291. doi:10.1109/TPEL.2015.2402281
- 43Farjah E, Givi H, Ghanbari T. Application of an efficient rogowski coil sensor for switch fault diagnosis and capacitor ESR monitoring in nonisolated single-switch DC/DC converters. IEEE Trans Power Electron. 2017; 32(2): 1442-1456. doi:10.1109/TPEL.2016.2552039
- 44Reatti A, Corti F, Tesi A, Torlai A, Kazimierczuk M. Effect of parasitic components on dynamic performance of power stages of DC-DC PWM buck and boost converters in CCM. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS). Sapporo, Japan; 2019: 1-5.
10.1109/ISCAS.2019.8702520 Google Scholar
- 45Sun J, Mitchell DM, Greuel MF, Krein PT, Bass RM. Averaged modeling of PWM converters operating in discontinuous conduction mode. IEEE Trans Power Electron. 2001; 16(4): 482-492. doi:10.1109/63.931052
- 46Tiwari S, Basu S, Undeland TM, Midtgård OM. Efficiency and conducted EMI evaluation of a single-phase power factor correction boost converter using state-of-the-art SiC Mosfet and SiC diode. IEEE Transactions on Industry Applications. 2019; 55(6): 7745-7756. doi:10.1109/TIA.2019.2919266
- 47Wang J, Xu J, Gao Y, et al. Modified pulse train control technique for switching DC/DC converters. In: Proc. 8th International Conference on Power Electronics-ECCE Asia. Jeju, Korea (South); 2011: 355-358.
10.1109/ICPE.2011.5944546 Google Scholar
- 48Qin M, Xu J. Improved pulse regulation control technique for switching DC/DC converters operating in DCM. IEEE Transactions on Industrial Electronics. 2013; 60(5): 1819-1830. doi:10.1109/TIE.2012.2191750
- 49Sha J, Xu J, Bao B, Yan T. Effects of circuit parameters on dynamics of current mode pulse train controlled buck converter. IEEE Transactions on Industrial Electronics. 2014; 61(3): 1562-1573. doi:10.1109/TIE.2013.2257145
- 50Sha J, Xu J, Zhong S, Liu S, Xu L. Control pulse combination-based analysis of pulse train controlled DCM switching DC/DC converters. IEEE Transactions on Industrial Electronics. 2015; 62(1): 246-255. doi:10.1109/TIE.2014.2327002
- 51Sha J, Xu D, Chen Y, Xu J, Williams BW. A peak-capacitor-current pulse-train-controlled buck converter with fast transient response and a wide load range. IEEE Transactions on Industrial Electronics. 2016; 63(3): 1528-1538. doi:10.1109/TIE.2015.2494851
- 52Yu D, Wang L, Geng Y, Ma C, Ye Z, Liu Y. Pulse train controlled buck converter with coupled inductors. IET Power Electron. 2017; 10(10): 1231-1239. doi:10.1049/iet-pel.2016.0798
- 53Wang J, Xu J, Zhou G, Bao B. Pulse-train-controlled CCM buck converter with small ESR output-capacitor. IEEE Transactions on Industrial Electronics. 2013; 60(12): 5875-5881. doi:10.1109/TIE.2012.2232258
- 54Geng Y, Yu D, Cheng H, et al. Modified pulse train control based parallel connected buck converters. In: Proc. IEEE International Symposium on Circuits and Systems (ISCAS). Florence, Italy; 2018: 1-5.
10.1109/ISCAS.2018.8350894 Google Scholar
- 55Luo H, Xu J, He D, Sha J. Pulse train control strategy for CCM boost PFC converter with improved dynamic response and unity power factor. IEEE Transactions on Industrial Electronics. 2020; 67(12): 10377-10387. doi:10.1109/TIE.2019.2962467
- 56Chang M, Yang S, Kuo C, et al. Set-triggered-parallel-reset memristor logic for high-density heterogeneous-integration friendly normally of applications. IEEE Transactions on Circuits and Systems II: Express Briefs. 2015; 62(1): 80-84. doi:10.1109/TCSII.2014.2362713
- 57Zhang W, Gao H, Deng C, et al. An ultrathin memristor based on a two-dimensional WS2/MoS2 Heterojunction. Nanoscale. 2021; 13(26): 11497-11504. doi:10.1039/D1NR01683K