Chlorinated Polythiophene-Based Donors with Reduced Energy Loss for Organic Solar Cells
Huixue Li
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorJunzhen Ren
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLijiao Ma
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorZhihao Chen
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorYue Yu
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJianqiu Wang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Shaoqing Zhang
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
E-mail: [email protected]Search for more papers by this authorHuixue Li
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorJunzhen Ren
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorLijiao Ma
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorZhihao Chen
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorYue Yu
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorJianqiu Wang
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Shaoqing Zhang
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083 China
State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
The industrialization of organic solar cells (OSCs) faces challenges due to complex synthesis routes and high costs of organic photovoltaic materials. To address this, we designed and synthesized a series of polythiophene-based donor materials, PTVT-T-xCl (20%Cl, 50%Cl and 100%Cl), by introducing different degrees of chlorine substitution within their conjugated skeletons. The incorporation of chlorine atoms does not change the planar conformation of the conjugated main chain of the control polymer, PTVT-T, but effectively reduces their HOMO energy levels (≤ –5.3 eV) and alters the crystallinity of the polymers. In addition, when preparing OSC by blending with non-fused electron acceptor A4T-16, the non-radiative energy loss of the three photovoltaic devices gradually decreased with the increase of chlorine content (0.343, 0.278 and 0.189 eV, respectively). Notably, PTVT-T-20%Cl exhibited a more moderate nanoscale phase separation with the acceptor, leading to efficient exciton dissociation, lower bimolecular recombination, and thus a favorable current in the OSCs. Consequently, the photovoltaic device based on PTVT-T-20%Cl:A4T-16 achieved a remarkable photovoltaic efficiency of 11.8%. In addition, the PTVT-T-xCl series polymers show much lower material-only-cost (MOC) values than the other reported photoactive material systems. This work provides the way for the development of low-cost photovoltaic materials and the industrial application of OSC, overcoming previous limitations posed by high energy losses in polythiophene-based donors.
Supporting Information
Filename | Description |
---|---|
cjoc202400793-sup-0001-supinfo.pdfPDF document, 2.1 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Scharber, M. C.; Sariciftci, N. S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 2013, 38, 1929–1940.
- 2 Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 2019, 48, 1596–1625.
- 3 Ma, L.; Zhang, S.; Ren, J.; Wang, G.; Li, J.; Chen, Z.; Yao, H.; Hou, J. Design of a Fully Non-Fused Bulk Heterojunction toward Efficient and Low-Cost Organic Photovoltaics. Angew. Chem. Int. Ed. 2023, 62, e202214088.
- 4 Zhang, T.; Lv, Q.; Peng, Z.; An, C.; Bi, P.; Xu, Y.; Yang, N.; Wang, J.; Xian, K.; Ye, L.; Zhang, S.; Hou, J. Efficient Small-Molecule Organic Solar Cells by Modulating Fluorine Substitution Position of Donor Material. Chin. J. Chem. 2023, 41, 755–762.
- 5 Chen, Z.; Zhang, S.; Zhang, T.; Ren, J.; Dai, J.; Li, H.; Qiao, J.; Hao, X.; Hou, J. Iodinated Electron Acceptor with Significantly Extended Exciton Diffusion Length for Efficient Organic Photovoltaic Cells. Angew. Chem. Int. Ed. 2024, 63, e202317892.
- 6 Wang, J.; Bi, P.; Wang, Y.; Zheng, Z.; Chen, Z.; Qiao, J.; Wang, W.; Li, J.; An, C.; Zhang, S.; Hao, X.; Hou, J. Manipulating Film Formation Kinetics Enables Organic Photovoltaic Cells with 19.5% Efficiency. CCS Chem. 2024, 6, 218–229.
- 7 Liu, K.; Jiang, Y.; Liu, F.; Ran, G.; Huang, F.; Wang, W.; Zhang, W.; Zhang, C.; Hou, J.; Zhu, X. Organic Solar Cells with Over 19% Efficiency Enabled by a 2D-Conjugated Non-Fullerene Acceptor Featuring Favorable Electronic and Aggregation Structures. Adv. Mater. 2023, 35, 2300363.
- 8 Li, X.; Tang, A.; Wang, H.; Wang, Z.; Du, M.; Guo, Q.; Guo, Q.; Zhou, E. Benzotriazole-Based 3D Four-Arm Small Molecules Enable 19.1 % Efficiency for PM6 : Y6-Based Ternary Organic Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202306847.
- 9 Wang, Z.; Wang, X.; Tu, L.; Wang, H.; Du, M.; Dai, T.; Guo, Q.; Shi, Y.; Zhou, E. Dithienoquinoxalineimide-Based Polymer Donor Enables All-Polymer Solar Cells Over 19 % Efficiency. Angew. Chem. Int. Ed. 2024, 63, e202319755.
- 10 Wang, Z.; Wang, H.; Yang, L.; Du, M.; Gao, L.; Guo, Q.; Zhou, E. Selenophene-fused Perylene Diimide-Based Cathode Interlayer Enables 19 % Efficiency Binary Organic Solar Cells via Stimulative Charge Extraction. Angew. Chem. Int. Ed. 2024, e202404921.
- 11 Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; Zhou, Z.; Zeng, R.; Zhu, H.; Chen, C.-C.; MacKenzie, R. C. I.; Zou, Y.; Nelson, J.; Zhang, Y.; Sun, Y.; Liu, F. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663.
- 12 Wang, J.; Wang, Y.; Bi, P.; Chen, Z.; Qiao, J.; Li, J.; Wang, W.; Zheng, Z.; Zhang, S.; Hao, X.; Hou, J. Binary Organic Solar Cells with 19.2% Efficiency Enabled by Solid Additive. Adv. Mater. 2023, 35, 2301583.
- 13 Zhang, M.; Guo, X.; Ma, W.; Ade, H.; Hou, J. A Large-Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Adv. Mater. 2015, 27, 4655–4660.
- 14 Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.
- 15 Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. Single-Junction Organic Photovoltaic Cell with 19% Efficiency. Adv. Mater. 2021, 33, 2102420.
- 16 Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151.
- 17 Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170–1174.
- 18 Yang, N.; Zhang, T.; Wang, S.; An, C.; Seibt, S.; Wang, G.; Wang, J.; Yang, Y.; Wang, W.; Xiao, Y.; Yao, H.; Zhang, S.; Ma, W.; Hou, J. An ortho-Bisalkyloxylated Benzene-Based Fully Non-fused Electron Acceptor for Efficient Organic Photovoltaic Cells. Small Methods 2024, 8, 2300036.
- 19 Gu, X.; Zeng, R.; He, T.; Zhou, G.; Li, C.; Yu, N.; Han, F.; Hou, Y.; Lv, J.; Zhang, M.; Zhang, J.; Wei, Z.; Tang, Z.; Zhu, H.; Cai, Y.; Long, G.; Liu, F.; Zhang, X.; Huang, H. Simple-Structured Acceptor with Highly Interconnected Electron-Transport Pathway Enables High-Efficiency Organic Solar Cells. Adv. Mater. 2024, 2401370.
- 20 Wang, J.; Bi, F.; Du, L.; Shang, C.; Liu, S.; Du, Z.; Yu, D.; Bao, X. Cyanoesterthiophene Based Low-Cost Polymer Donors for High Efficiency Organic Solar Cells. Adv. Funct. Mater. 2024, 2313850.
- 21 Wu, J.; Fan, Q.; Xiong, M.; Wang, Q.; Chen, K.; Liu, H.; Gao, M.; Ye, L.; Guo, X.; Fang, J.; Guo, Q.; Su, W.; Ma, Z.; Tang, Z.; Wang, E.; Ade, H.; Zhang, M. Carboxylate substituted pyrazine: A simple and low-cost building block for novel wide bandgap polymer donor enables 15.3% efficiency in organic solar cells. Nano Energy 2021, 82, 105679.
- 22 Ye, Q.; Ge, J.; Li, D.; Chen, Z.; Shi, J.; Zhang, X.; Zhou, E.; Yang, D.; Ge, Z. Modulation of the Fluorination Site on Side-Chain Thiophene Improved Efficiency in All-Small-Molecule Organic Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 33234–33241.
- 23 Cheng, F.; Cui, Y.; Ding, F.; Chen, Z.; Xie, Q.; Xia, X.; Zhu, P.; Lu, X.; Zhu, H.; Liao, X.; Chen, Y. Terpolymerization and Regioisomerization Strategy to Construct Efficient Terpolymer Donors Enabling High-Performance Organic Solar Cells. Adv. Mater. 2023, 35, 2300820.
- 24 Zhong, J.; Cui, Y.; Zhu, P.; Zhang, M.; Xie, W.; Liu, H.; Xie, Q.; Liu, F.; Liao, X.; Chen, Y. Nonfused Ring Electron Acceptors for Efficient Organic Solar Cells Enabled by Multiple Intramolecular Conformational Locks. ACS Appl. Energy Mater 2022, 5, 5136–5145.
- 25 Dong, X.; Yang, K.; Tang, H.; Hu, D.; Chen, S.; Zhang, J.; Kan, Z.; Duan, T.; Hu, C.; Dai, X.; Xiao, Z.; Sun, K.; Lu, S. Improving Molecular Planarity by Changing Alky Chain Position Enables 12.3% Efficiency All-Small-Molecule Organic Solar Cells with Enhanced Carrier Lifetime and Reduced Recombination. Sol. RRL 2020, 4, 1900326.
- 26 Ren, J.; Bi, P.; Zhang, J.; Liu, J.; Wang, J.; Xu, Y.; Wei, Z.; Zhang, S.; Hou, J. Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. Natl. Sci. Rev. 2021, 8, nwab031.
- 27 Zhang, Z.; Yu, J.; Yin, X.; Hu, Z.; Jiang, Y.; Sun, J.; Zhou, J.; Zhang, F.; Russell, T. P.; Liu, F.; Tang, W. Conformation Locking on Fused-Ring Electron Acceptor for High-Performance Nonfullerene Organic Solar Cells. Adv. Funct. Mater. 2018, 28, 1705095.
- 28 Li, J.; Li, H.; Ma, L.; Zhang, S.; Hou, J. Design and Synthesis of N-Alkylaniline-Substituted Low Band-Gap Electron Acceptors for Photovoltaic Application. Chin. J. Chem. 2023, 41, 424–430.
- 29 Xu, Y.; Wang, J.; Yao, H.; Bi, P.; Zhang, T.; Xu, J.; Hou, J. An Asymmetric Non-fullerene Acceptor with Low Energy Loss and High Photovoltaic Efficiency. Chin. J. Chem. 2023, 41, 1045–1050.
- 30 Jeong, D.; Lee, J.-W.; Lee, S.; Kim, G.-U.; Jeon, H.; Kim, S.; Yang, C.; Lee, C.; Kim, B. J. Polythiophene-based terpolymers with modulated aggregation behaviors for high-performance organic solar cells with 16.6% efficiency. Nano Energy 2023, 114, 108618.
- 31 Feng, L.-W.; Chen, J.; Mukherjee, S.; Sangwan, V. K.; Huang, W.; Chen, Y.; Zheng, D.; Strzalka, J. W.; Wang, G.; Hersam, M. C.; DeLongchamp, D.; Facchetti, A.; Marks, T. J. Readily Accessible Benzo[d]thiazole Polymers for Nonfullerene Solar Cells with >16% Efficiency and Potential Pitfalls. ACS Energy Lett. 2020, 5, 1780–1787.
- 32 Sun, C.; Pan, F.; Chen, S.; Wang, R.; Sun, R.; Shang, Z.; Qiu, B.; Min, J.; Lv, M.; Meng, L.; Zhang, C.; Xiao, M.; Yang, C.; Li, Y. Achieving Fast Charge Separation and Low Nonradiative Recombination Loss by Rational Fluorination for High-Efficiency Polymer Solar Cells. Adv. Mater. 2019, 31, 1905480.
- 33 Ren, J.; Zhang, S.; Bi, P.; Chen, Z.; Zhang, T.; Wang, J.; Ma, L.; Li, J.; Hou, J. An over 16% efficiency organic solar cell enabled by a low-cost pyrazine-based polymer donor. J. Mater. Chem. A 2022, 10, 25595–25601.
- 34 An, M.; Bai, Q.; Jeong, S. Y.; Ding, J.; Zhao, C.; Liu, B.; Liang, Q.; Wang, Y.; Zhang, G.; Woo, H. Y.; Qiu, X.; Niu, L.; Guo, X.; Sun, H. Polythiophene Derivatives for Efficient All-Polymer Solar Cells. Adv. Energy Mater. 2023, 13, 2301110.
- 35 Yuan, X.; Zhao, Y.; Xie, D.; Pan, L.; Liu, X.; Duan, C.; Huang, F.; Cao, Y. Polythiophenes for organic solar cells with efficiency surpassing 17%. Joule 2022, 6, 647–661.
- 36 Bi, P.; Ren, J.; Zhang, S.; Wang, J.; Chen, Z.; Gao, M.; Cui, Y.; Zhang, T.; Qin, J.; Zheng, Z.; Ye, L.; Hao, X.; Hou, J. Low-cost and high-performance poly(thienylene vinylene) derivative donor for efficient versatile organic photovoltaic cells. Nano Energy 2022, 100, 107463.
- 37 Wang, L.; An, Q.; Yan, L.; Bai, H.-R.; Jiang, M.; Mahmood, A.; Yang, C.; Zhi, H.; Wang, J.-L. Non-fullerene acceptors with hetero-dihalogenated terminals induce significant difference in single crystallography and enable binary organic solar cells with 17.5% efficiency. Energy Environ. Sci. 2022, 15, 320–333.
- 38 Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; Ma, W.; Hou, J. Organic photovoltaic cell with 17% efficiency and superior processability. Natl. Sci. Rev. 2019, 7, 1239–1246.
- 39 Cui, Y.; Wang, Y.; Bergqvist, J.; Yao, H.; Xu, Y.; Gao, B.; Yang, C.; Zhang, S.; Inganäs, O.; Gao, F.; Hou, J. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat. Energy 2019, 4, 768–775.
- 40 Zhang, X.; Wu, J.; Wei, D.; Cai, Y.; Sun, X. Exploring the fluorination effect on photophysical and photovoltaic properties of Benzo[1,2-c: 4,5-c’]dithiophene-4,8-dione copolymers. Dyes Pigm. 2021, 187, 109109.
- 41 Wang, Y.; Liu, S.; Gao, H.; Wang, L.; Wang, W.; Zhao, B.; Wu, H.; Gao, C. Synergistic halogenation of backbone and end group for high- performance non-fused acceptors based organic solar cells. Dyes Pigm. 2022, 200, 110178.
- 42 Ma, L.; Zhang, S.; Zhu, J.; Wang, J.; Ren, J.; Zhang, J.; Hou, J. Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nat. Commun. 2021, 12, 5093.
- 43 Chen, Z.; Zhang, S.; Ren, J.; Zhang, T.; Dai, J.; Wang, J.; Ma, L.; Qiao, J.; Hao, X.; Hou, J. Molecular Design for Vertical Phase Distribution Modulation in High-Performance Organic Solar Cells. Adv. Mater. 2024, 2310390.
- 44 Zhang, J.; Xie, S.; Zhang, X.; Lu, Z.; Xiao, H.; Li, C.; Li, G.; Xu, X.; Chen, X.; Bo, Z. Hyperbranched polymer as an acceptor for polymer solar cells. Chem. Commun. 2017, 53, 537–540.
- 45 Wang, W.; Zhang, S.; Zhang, T.; Yang, Y.; Cui, Y.; Yu, Y.; Xiao, Y.; Ryu, D. H.; Song, C. E.; Hou, J. Molecule Design of Novel Electron Acceptor with Superior Chemical Stability for Photovoltaic Applications. Adv. Funct. Mater. 2023, 33, 2304752.
- 46 Yang, C.; Ma, L.; Xu, Y.; Ren, J.; Hou, J.; Zhang, S. Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors. Sci. China Chem. 2022, 65, 2604–2612.