Highly Stable Binary Cross-Linkable Organic Nonlinear Optical Materials Using Different Acceptors Based on Huisgen Cycloaddition Reaction
Yu Zhang
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
Search for more papers by this authorWeijun Zhang
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
Search for more papers by this authorShuhui Bo
Optoelectronics Research Centre, School of Science, Minzu University of China, Beijing, 100081 China
Search for more papers by this authorWenlong He
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
Search for more papers by this authorChuying Liu
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
Search for more papers by this authorCorresponding Author
Jiahai Wang
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Fenggang Liu
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYu Zhang
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
Search for more papers by this authorWeijun Zhang
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
Search for more papers by this authorShuhui Bo
Optoelectronics Research Centre, School of Science, Minzu University of China, Beijing, 100081 China
Search for more papers by this authorWenlong He
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
Search for more papers by this authorChuying Liu
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
Search for more papers by this authorCorresponding Author
Jiahai Wang
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Fenggang Liu
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
How to obtain organic electro-optic materials with large electro-optic coefficients, high glass transition temperature, and good optical transparency remains a challenge in this field. To solve this problem, we introduce groups that can undergo Huisgen cycloaddition reactions into the donor and electron bridge of chromophores with large hyperpolarizability using tetrahydroquinoline as the donor. Binary cross-linkable chromophores TLD1-2 with CF3-TCF as the acceptor and chromophores TLD3-4 with 5Fph-TCF as the acceptor were synthesized. After poling and crosslinking, the Tg of TLD1/TLD2 and TLD3/TLD4 were raised to 152 and 174 °C, respectively. The electro-optical coefficients of chromophores TLD1/TLD2 and TLD3/TLD4 were as high as 312 pm/V and 287 pm/V, respectively. The long-term alignment stability test showed that after being left at 85 °C for 500 h, the cross-linked film TLD3/TLD4 can still maintain more than 98% of the original electro-optical coefficient value, which is higher than that of TLD1/TLD2 (93%). The chromophore TLD3-4 exhibited much blue-shifted maximum absorption wavelengths (~40 nm) compared to TLD1-2 which was beneficial for reducing optical loss in the device. The combination of high electro-optic coefficient, strong stability, and excellent optical transparency makes the TLD series of binary cross-linked materials very promising for practical high-performance electro-optic devices.
Supporting Information
Filename | Description |
---|---|
cjoc202400711-sup-0001-supinfo.pdfPDF document, 2.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Messner, A.; Jud, P. A.; Winiger, J.; Eppenberger, M.; Chelladurai, D.; Heni, W.; Baeuerle, B.; Koch, U.; Ma, P.; Haffner, C. Broadband Metallic Fiber-to-Chip Couplers and a Low-Complexity Integrated Plasmonic Platform. Nano Lett. 2021, 21, 4539–4545.
- 2 Jiang, M. H.; Wang, X. B.; Xu, Q.; Li, M.; Niu, D. H.; Sun, X. Q.; Wang, F.; Li, Z. Y.; Zhang, D. M. High-speed electro-optic switch based on nonlinear polymer-clad waveguide incorporated with quasi-in-plane coplanar waveguide electrodes. Opt. Mater. 2018, 75, 26–30.
- 3 Haffner, C.; Chelladurai, D.; Fedoryshyn, Y.; Josten, A.; Baeuerle, B.; Heni, W.; Watanabe, T.; Cui, T.; Cheng, B. J.; Saha, S. Low-loss plasmon-assisted electro-optic modulator. Nature 2018, 556, 483–486.
- 4 Xu, H. J.; Yang, D.; Liu, F. G.; Fu, M. K.; Bo, S. H.; Liu, X. H.; Cao, Y. Nonlinear optical chromophores based on Dewar's rules: enhancement of electro-optic activity by introducing heteroatoms into the donor or bridge. Phys. Chem. Chem. Phys. 2015, 17, 29679–29688.
- 5 Xu, H. J.; Sun, Y. N.; Kan, Y. Y.; Gao, K. Recent Progress in Design of Organic Electro-optic Materials with Ultrahigh Electro-optic Activitie. Chin. J. Chem. 2022, 40, 3001–3012.
- 6
Ullah, F.; Deng, N. P.; Qiu, F. Recent progress in electro-optic polymer for ultra-fast communication. Photonix 2021, 2, 13.
10.1186/s43074-021-00036-y Google Scholar
- 7 Elder, D. L.; Dalton, L. R. Organic Electro-Optics and Optical Rectification: From Mesoscale to Nanoscale Hybrid Devices and Chip-Scale Integration of Electronics and Photonics. Ind. Eng. Chem. Res. 2022. 61, 1207–1231.
- 8 Kaur, P.; Singh, K. Second-order nonlinear polarizability of "Push- Pull" chromophores. A decade of progress in donor-π-acceptor materials. Chem. Rec. 2022, 22, e202200024.
- 9 Durand, R. J.; Achelle, S.; Gauthier, S.; Cabon, N.; Ducamp, M.; Kahlal, S.; Saillard, J. Y.; Barsella, A.; Robin-Le Guen, F. Incorporation of a ferrocene unit in the π-conjugated structure of donor-linker- acceptor (D-π-A) chromophores for nonlinear optics (NLO). Dyes Pigm. 2018, 155, 68–74.
- 10 Zheng, Y. B.; Wu, J. Y.; Qu, S. W.; Deng, G. W.; Li, Z. H.; Sun, K.; Jiang, L. Z.; Chen, K. X.; Luo, J. D. Photo-bleaching of optical waveguide polymers with dipolar chromophores to improve their sensitivity for explosive vapor detection. J. Mater. Chem. C 2020, 8, 13010–13018.
- 11 Koch, U.; Uhl, C.; Hettrich, H.; Fedoryshyn, Y.; Hoessbacher, C.; Heni, W.; Baeuerle, B.; Bitachon, B. I.; Josten, A.; Ayata, M. A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter. Nat. Electron. 2020, 3, 338–345.
- 12 Heni, W.; Fedoryshyn, Y.; Baeuerle, B.; Josten, A.; Hoessbacher, C. B.; Messner, A.; Haffner, C.; Watanabe, T.; Salamin, Y.; Koch, U. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat. Commun. 2019, 10, 1694.
- 13 Benea-Chelmus, I. C.; Zhu, T. Q.; Settembrini, F. F.; Bonzon, C.; Mavrona, E.; Elder, D. L.; Heni, W.; Leuthold, J.; Dalton, L. R.; Faist, J. Three-Dimensional Phase Modulator at Telecom Wavelength Acting as a Terahertz Detector with an Electro-Optic Bandwidth of 1.25 Terahertz. ACS Photonics 2018, 5, 1398–1403.
- 14 Lu, G. W.; Hong, J. X.; Qiu, F.; Spring, A. M.; Kashino, T.; Oshima, J.; Ozawa, M. A.; Nawata, H.; Yokoyama, S. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit/s for energy-efficient datacentres and harsh-environment applications. Nat. Commun. 2020, 11, 5059.
- 15 Horst, Y.; Blatter, T.; Kulmer, L.; Bitachon, B. I.; Baeuerle, B.; Destraz, M.; Heni, W.; Koepfli, S.; Habegger, P.; Eppenberger, M. Transparent Optical-THz-Optical Link Transmission over 5/115 m at 240/190 Gbit/s Enabled by Plasmonics. In Optical Fiber Communications Conference and Exhibition (OFC), Electr Network, 2021.
- 16 Salamin, Y.; Benea-Chelmus, I. C.; Fedoryshyn, Y.; Heni, W.; Elder, D. L.; Dalton, L. R.; Faist, J.; Leuthold, J. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat. Commun. 2019, 10, 5550.
- 17 Wu, J. Y.; Fan, M. W.; Deng, G. W.; Gong, C. Y.; Chen, K. X.; Luo, J. D.; Chiang, K. S.; Rao, Y. J.; Gong, Y. Optofluidic laser explosive sensor with ultralow detection limit and large dynamic range using donor- acceptor-donor organic dye. Sens. Actuators B Chem. 2019, 298, 126830.
- 18 Liu, K. W.; Li, C. L.; Li, M. C.; Ho, R. M. Stimuli-Responsive Color Films of Poly(4-vinylpyridine)-b-Poly(ε-caprolactone) Complexed with Cyano-Capped Chromophores. Langmuir 2013, 29, 9016–9023.
- 19 Salamin, Y.; Baeuerle, B.; Heni, W.; Abrecht, F. C.; Josten, A.; Fedoryshyn, Y.; Haffner, C.; Bonjour, R.; Watanabe, T.; Burla, M. Microwave plasmonic mixer in a transparent fibre-wireless link. Nat. Photonics 2018, 12, 749.
- 20 Liu, J. L.; Ouyang, C. B.; Huo, F. Y.; He, W. Q.; Cao, A. C. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials. Dyes Pigm. 2020, 181, 108509.
- 21 Zhang, H.; Yang, Y. H.; Xiao, H. Y.; Liu, F. G.; Huo, F. Y.; Chen, L.; Chen, Z.; Bo, S. H.; Qiu, L.; Zhen, Z. Enhancement of electro-optic properties of bis(N,N-diethyl)aniline based second order nonlinear chromophores by introducing a stronger electron acceptor and modifying the π-bridge. J. Mater. Chem. C 2017, 5, 6704–6712.
- 22 Liu, F. G.; Zeng, Z. Y.; Rahman, A. D.; Chen, X. Y.; Liang, Z. W.; Huang, X. Q.; Zhang, S. M.; Xu, H. J.; Wang, J. H. Design and synthesis of organic optical nonlinear multichromophore dendrimers based on double-donor structures. Mater. Chem. Front. 2021, 5, 8341–8351.
- 23 Tang, R. L.; Zhou, S. M.; Cheng, Z. Y.; Chen, H.; Deng, L.; Peng, Q.; Li, Z. Controllable Synthesis of Externally Functional Dendronized Polymers. CCS Chem. 2020, 2, 1040–1048.
- 24 Xu, H. J.; Liu, J. P.; Liu, J.; Yu, C. W.; Zhai, Z. F.; Qina, G. Z.; Liu, F. G. Self-assembled binary multichromophore dendrimers with enhanced electro-optic coefficients and alignment stability. Mater. Chem. Front. 2020, 4, 168–175.
- 25 Zhang, L.; Liu, F. G.; Yang, R. X.; Huo, F. Y.; Zhang, W. J.; Zhang, Y.; Liu, C. Y.; Hui, C. N.; Wang, J. H. Highly Efficient and Stable Binary Cross-Linkable/Self-Assembled Organic Nonlinear Optical Molecular Glasses. Adv. Sci. 2023, 10, 2304229.
- 26 Lu, G.-W.; Hong, J.; Qiu, F.; Spring, A. M.; Kashino, T.; Oshima, J.; Ozawa, M.-a.; Nawata, H.; Yokoyama, S. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat. Commun. 2020, 11, 4224.
- 27 Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters Induced Electron Redistribution to Tune Oxygen Reduction Activity of Transition Metal Single-Atom for Metal-Air Batteries. Angew. Chem. Int. Ed. 2022, 61, e202116068.
- 28 Wang, H. F.; Ye, W. Q.; Yin, B. W.; Wang, K. X.; Riaz, M. S.; Xie, B. B.; Zhong, Y. J.; Hu, Y. Modulating Cation Migration and Deposition with Xylitol Additive and Oriented Reconstruction of Hydrogen Bonds for Stable Zinc Anodes. Angew. Chem. Int. Ed. 2023, 62, e202218872.
- 29 Spruell, J. M.; Wolffs, M.; Leibfarth, F. A.; Stahl, B. C.; Heo, J. H.; Connal, L. A.; Hu, J.; Hawker, C. J. Reactive, Multifunctional Polymer Films through Thermal Cross-linking of Orthogonal Click Groups. J. Am. Chem. Soc. 2011, 133, 16698–16706.
- 30 Cheng, Z. Y.; Tang, R. L.; Wang, R. F.; Xie, Y. J.; Chen, P. Y.; Liu, G. C.; Li, Z. Photo-crosslinkable second-order nonlinear optical polymer: facile synthesis and enhanced NLO thermostability. Polym. Chem. 2018, 9, 3522–3527.
- 31 Shi, Z. W.; Cui, Y. Z.; Huang, S.; Li, Z. A.; Luo, J. D.; Jen, A. K. Y. Dipolar Chromophore Facilitated Huisgen Cross-Linking Reactions for Highly Efficient and Thermally Stable Electrooptic Polymers. ACS Macro Lett. 2012, 1, 793–796.
- 32 Shi, Z.; Hau, S.; Luo, J.; Kim, T. D.; Tucker, N. M.; Ka, J. W.; Sun, H.; Pyajt, A.; Dalton, L.; Chen, A. Highly efficient diels-alder crosslinkable electro-optic dendrimers for electric-field sensors. Adv. Funct. Mater. 2007, 17, 2557–2563.
- 33 Zeng, Z. Y.; Liu, J. H.; Luo, T. Y.; Li, Z. B.; Liao, J. F.; Zhang, W. J.; Zhang, L.; Liu, F. G. Electro-optic crosslinkable chromophores with ultrahigh electro-optic coefficients and long-term stability. Chem. Sci. 2022, 13, 13393–13402.
- 34 Zeng, Q. Z.; Chen, X. Y.; Rahman, A.; Zeng, Z. Y.; Liang, Z. W.; Shi, L.; Huang, Z. L.; Bo, S. H.; Liu, F. G.; Wang, J. H. A modifiable double donor based on bis(N-ethyl-N-hydroxyethyl)aniline for organic optical nonlinear chromophores. Mater. Chem. Front. 2022, 6, 1079–1090.
- 35 Zhang, D.; Zou, J.; Wang, W.; Yu, Q.; Deng, G. W.; Wu, J. Y.; Li, Z. A.; Luo, J. D. Systematic study of the structure-property relationship of a series of near-infrared absorbing push-pull heptamethine chromophores for electro-optics. Sci. China Chem. 2021, 64, 263–273.
- 36 Li, Q. Q.; Lu, C. G.; Zhu, J.; Fu, E.; Zhong, C.; Li, S. Y.; Cui, Y. P.; Qin, J. G.; Li, Z. Nonlinear optical chromophores with pyrrole moieties as the conjugated bridge: Enhanced NLO effects and interesting optical behavior. J. Phys. Chem. B 2008, 112, 4545–4551.
- 37 Cheng, Y. J.; Luo, J. D.; Hau, S.; Bale, D. H.; Kim, T. D.; Shi, Z. W.; Lao, D. B.; Tucker, N. M.; Tian, Y. Q.; Dalton, L. R. Large electro-optic activity and enhanced thermal stability from diarylaminophenyl-containing high-β nonlinear optical chromophores. Chem. Mater. 2007, 19, 1154–1163.
- 38 Wu, J. Y.; Wang, W.; Chen, K. X.; Luo, J. D. The synthesis of second- order nonlinear optical chromophores with conjugated steric hindrance for electro-optics at 850 nm. J. Mater. Chem. C 2020, 8, 5494–5500.
- 39 Davies, J. A.; Elangovan, A.; Sullivan, P. A.; Olbricht, B. C.; Bale, D. H.; Ewy, T. R.; Isborn, C. M.; Eichinger, B. E.; Robinson, B. H.; Reid, P. J.; Li, X.; Dalton, L. R. Rational enhancement of second-order nonlinearity: Bis-(4-methoxyphenyl)hetero-aryl-amino donor-based chromophores: Design, synthesis, and electrooptic activity. J. Am. Chem. Soc. 2008, 130, 10565–10575..
- 40 Zhou, X. H.; Luo, J. D.; Davies, J. A.; Huang, S.; Jen, A. K. Y. Push-pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups. J. Mater. Chem. 2012, 22, 16390–16398.
- 41 Dalton, L. R.; Sullivan, P. A.; Bale, D. H. Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects. Chem. Rev. 2010, 110, 25–55.
- 42 Isborn, C. M.; Leclercq, A.; Vila, F. D.; Dalton, L. R.; Brédas, J. L.; Eichinger, B. E.; Robinson, B. H. Comparison of static first hyperpolarizabilities calculated with various quantum mechanical methods. J. Phys. Chem. A 2007, 111, 1319–1327.
- 43 Jin, W. W.; Johnston, P. V.; Elder, D. L.; Tillack, A. F.; Olbricht, B. C.; Song, J. S.; Reid, P. J.; Xu, R. M.; Robinson, B. H.; Dalton, L. R. Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling. Appl. Phys. Lett. 2014, 104, 243304.
- 44 Yin, X.; Pan, Q. W.; Shi, W.; Fang, C. S. Improvement of the interferometric method for measuring electro-optic coefficients of poled polymer thin films. Appl. Optics 2002, 41, 5929–5932.
- 45 Lytel, R.; Lipscomb, F.; Ticknor, T. Electrooptic Polymer Materials and Devices - Fundamental Limits. In Nonlinear Optical Properties of Advanced Materials, Proceedings Volume 1852, 1993, pp. 168–185.
- 46M. Z.; Xu, Q.; Wang, X. Q.; Zhao, C. M. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.