Enantioselective Borylative Functionalization of Internal Alkenes: A Platform for Constructing Vicinal Stereocenters†
Yu-Shen Zhu
State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071 China
Search for more papers by this authorJia-Xin Li
State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071 China
Search for more papers by this authorHao-Tian Zhao
State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Bo Su
State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071 China
E-mail: [email protected]Search for more papers by this authorYu-Shen Zhu
State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071 China
Search for more papers by this authorJia-Xin Li
State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071 China
Search for more papers by this authorHao-Tian Zhao
State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Bo Su
State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071 China
E-mail: [email protected]Search for more papers by this author† Dedicated to the Special Issue of Boron Chemistry.
Comprehensive Summary
Vicinal stereogenic centers are ubiquitous structural scaffolds in both natural products and synthetic compounds, yet their enantioselective construction remains a significant challenge in organic synthesis. Organoboron compounds are of paramount importance in synthetic chemistry due to their ability to undergo facile transformations, yielding diverse essential chemical bonds such as carbon-carbon, carbon-oxygen, carbon-nitrogen, and carbon-halogen bonds. Transition-metal-catalyzed asymmetric borylative functionalizations of internal alkenes offer a promising strategy for the enantioselective installation of two adjacent chiral centers across carbon-carbon bonds. By leveraging the versatile transformations of the newly introduced boryl unit, this approach holds great potential for expanding the structural diversity of vicinal stereogenic scaffolds. In this concise review, we aim to highlight recent advancements in transition-metal-catalyzed asymmetric borylative functionalizations of internal alkenes, underscore their utility as a versatile approach for constructing vicinal stereogenic centers, and discuss unsolved challenges and future directions in this field.
Key Scientists
References
- 1(a) Long, R.; Huang, J.; Gong, J.; Yang, Z. Direct construction of vicinal all-carbon quaternary stereocenters in natural product synthesis. Nat. Prod. Rep. 2015, 32, 1584–1601; (b) Büschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K. B.; Overman, L. E. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms. Angew. Chem. Int. Ed. 2016, 55, 4156–4186.
- 2(a) Peterson, E. A.; Overman, L. E. Contiguous stereogenic quaternary carbons: A daunting challenge in natural products synthesis. Proc. Nat. Acad. Sci. 2004, 101, 11943–11948; (b) Zhang, H.; Hong, L.; Kang, H.; Wang, R. Construction of Vicinal All-Carbon Quaternary Stereocenters by Catalytic Asymmetric Alkylation Reaction of 3-Bromooxindoles with 3-Substituted Indoles: Total Synthesis of (+)-Perophoramidine. J. Am. Chem. Soc. 2013, 135, 14098–14101.
- 3
Yang, K.; Chen, L.; Su, B. Dual-Catalysis-Enabled Construction of Vicinal Stereogenic Centers through Diastereo- and Enantioselective Allylic Substitution. Synthesis 2024, DOI: https://doi.org/10.1055/s-0040-1720115.
10.1055/s-0040-1720115 Google Scholar
- 4(a) Fyfe, J. W. B.; Watson, A. J. B. Recent Developments in Organoboron Chemistry: Old Dogs, New Tricks. Chem 2017, 3, 31–55; (b) Collins, B. S. L.; Wilson, C. M.; Myers, E. L.; Aggarwal, V. K. Asymmetric Synthesis of Secondary and Tertiary Boronic Esters. Angew. Chem. Int. Ed. 2017, 56, 11700–11733; (c) Hemming, D.; Fritzemeier, R.; Westcott, S. A.; Santos, W. L.; Steel, P. G. Copper-Boryl Mediated Organic Synthesis. Chem. Soc. Rev. 2018, 47, 7477–7494; (d) Friese, F. W.; Studer, A. New Avenues for C–B Bond Formation via Radical Intermediates. Chem. Sci. 2019, 10, 8503–8518; (e) Xu, L.; Zhang, S.; Li, P. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chem. Soc. Rev. 2015, 44, 8848–8858.
- 5(a) Hu, J.; Ferger, M.; Shi, Z.; Marder, T. B. Recent Advances in Asymmetric Borylation by Transition Metal Catalysis. Chem. Soc. Rev. 2021, 50, 13129–13188; (b) Manna, S.; Das, K. K.; Nandy, S.; Aich, D.; Paul, S.; Panda, S. A New Avenue for the Preparation of Organoboron Compounds via Nickel Catalysis. Coord. Chem. Rev. 2021, 448, 214165–214188; (c) Bose, S. K.; Mao, L.; Kuehn, L.; Radius, U.; Nekvinda, J.; Santos, W. L.; Westcott, S. A.; Steel, P. G.; Marder, T. B. First-Row d-Block Element-Catalyzed Carbon–Boron Bond Formation and Related Processes. Chem. Rev. 2021, 121, 13238–13341; (d) Alam, S.; Karim, R.; Khan, A.; Pal, A. K.; Maruani, A. Copper-Catalyzed Preparation of Alkenylboronates and Arylboronates. Eur. J. Org. Chem. 2021, 2021, 6115–6160; (e) Whyte, A.; Torelli, A.; Mirabi, B.; Zhang, A.; Lautens, M. Copper-Catalyzed Borylative Difunctionalization of π-Systems. ACS Catal. 2020, 10, 11578–11622; (f) Perry, G. J. P.; Jia, T.; Procter, D. J. Copper-Catalyzed Functionalization of 1,3-Dienes: Hydrofunctionalization, Borofunctionalization, and Difunctionalization. ACS Catal. 2020, 10, 1485–1499; (g) Liu, Z.; Gao, Y.; Zeng, T.; Engle, K. M. Transition-Metal-Catalyzed 1,2-Carboboration of Alkenes: Strategies, Mechanisms, and Stereocontrol. Isr. J. Chem. 2020, 60, 219–229; (h) Kubota, K.; Iwamoto; Ito, H. Formal nucleophilic borylation and borylative cyclization of organic halides. Org. Biomol. Chem. 2017, 15, 285–300; (i) Yoshida, H. Borylation of Alkynes under Base/Coinage Metal Catalysis: Some Recent Developments. ACS Catal. 2016, 6, 1799–1811; (j) Neeve, E. C.; Geier, S. J.; Mkhalid, I. A. I.; Westcott, S. A.; Marder, T. B. Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse. Chem. Rev. 2016, 116, 9091–9161; (k) Irvine, G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. Transition Metal−Boryl Compounds: Synthesis, Reactivity, and Structure. Chem. Rev. 1998, 98, 2685–2722; (l) Hartwig, J. F.; Larsen, M. A. Undirected, Homogeneous C–H Bond Functionalization: Challenges and Opportunities. ACS Cent. Sci. 2016, 2, 281–292; (m) Ros, A.; Fernandez, R.; Lassaletta, J. M. Functional Group Directed C-H Borylation. Chem. Soc. Rev. 2014, 43, 3229–3243; (n) Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 2011, 40, 1992–2002; (o) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C-H Activation for the Construction of C-B Bonds. Chem. Rev. 2010, 110, 890–931; (p) Su, B.; Hartwig, J. F. Development of Chiral Ligands for the Transition-Metal-Catalyzed Enantioselective Silylation and Borylation of C−H Bonds. Angew. Chem. Int. Ed. 2022, 61, e202113343; (q) Xue, W.; Oestreich, M. Beyond Carbon: Enantioselective and Enantiospecific Reactions with Catalytically Generated Boryl- and Silylcopper Intermediates. ACS Cent. Sci. 2020, 6, 1070–1081.
- 6 Brown, H. C. From Little Acorns to Tall Oaks: From Boranes Through Organoboranes. Science 1980, 210, 485–492.
- 7(a) Geier, S. J.; Vogels, C. M.; Melanson, J. A.; Westcott, S. A. The transition metal-catalysed hydroboration reaction. Chem. Soc. Rev. 2022, 51, 8877–8922; (b) Obligacion, J. V.; Chirik, P. J. Earth- abundant transition metal catalysts for alkene hydrosilylation and hydroboration. Nat. Rev. Chem. 2018, 2, 15–34; (c) Chen, J.; Guo, J.; Lu, Z. Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis. Chin. J. Chem. 2018, 36, 1075–1109; (d) Burgess, K.; Ohlmeyer, M. J. Transition-metal promoted hydroborations of alkenes, emerging methodology for organic transformations. Chem. Rev. 1991, 91, 1179–1191.
- 8(a) Schiffner, J. A.; Muether, K.; Oestreich, M. Enantioselective Conjugate Borylation. Angew. Chem. Int. Ed. 2010, 49, 1194–1196; (b) Liu, Y. Y.; Zhang, W. B. Development of Cu-Catalyzed Asymmetric Addition of Boron to Olefin. Chin. J. Org. Chem. 2016, 36, 2249–2271; (c) Das, K. K.; Manna, S.; Panda, S. Transition metal catalyzed asymmetric multicomponent reactions of unsaturated compounds using organoboron reagents. Chem. Commun. 2021, 57, 441–459; (d) Ji, Y. Q.; Zhang, M.; Xing, M. M.; Cui, H. H.; Zhao, Q.; Zhang, C. Transition Metal Catalyzed Enantioselective Borylative Cyclization Reactions. Chin. J. Chem. 2021, 39, 391–401.
- 9(a) Dorn, S. K.; Brown, M. K. Cooperative Pd/Cu Catalysis for Alkene Arylboration: Opportunities for Divergent Reactivity. ACS Catal. 2022, 12, 2058–2063; (b) Rivera-Chao, E.; Fra, L.; Fañanás-Mastral, M. Synergistic Bimetallic Catalysis for Carboboration of Unsaturated Hydrocarbons. Synthesis 2018, 50, 3825–3832.
- 10 Ito, H.; Kosaka, Y.; Nonoyama, K.; Sasaki, Y.; Sawamura, M. Synthesis of optically active boron-silicon bifunctional cyclopropane derivatives through enantioselective copper(I)-catalyzed reaction of allylic carbonates with a diboron derivative. Angew. Chem. Int. Ed. 2008, 47, 7424–7427.
- 11 Zhong, C. M.; Kunii, S.; Kosaka, Y.; Sawamura, M.; Ito, H. Enantioselective Synthesis of trans-Aryl- and -Heteroaryl-Substituted Cyclopropylboronates by Copper(I)-Catalyzed Reactions of Allylic Phosphates with a Diboron Derivative. J. Am. Chem. Soc. 2010, 132, 11440–11442.
- 12 Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Copper(I) β-Boroalkyls from Alkene Insertion: Isolation and Rearrangement. Organometallics 2006, 25, 2405–2408.
- 13 Green, J. C.; Joannou, M. V.; Murray, S. A.; Zanghi, J. M.; Meek, S. J. Enantio- and Diastereoselective Synthesis of Hydroxy Bis(boronates) via Cu-Catalyzed Tandem Borylation/1,2-Addition. ACS Catal. 2017, 7, 4441–4445.
- 14 Zanghi, J. M.; Liu, S.; Meek, S. J. Enantio- and Diastereoselective Synthesis of Functionalized Carbocycles by Cu-Catalyzed Borylative Cyclization of Alkynes with Ketones. Org. Lett. 2019, 21, 5172–5177.
- 15 Burns, A. R.; Solana Gonzalez, J.; Lam, H. W. Enantioselective copper(I)-catalyzed borylative aldol cyclizations of enone diones. Angew. Chem. Int. Ed. 2012, 51, 10827–31.
- 16 Sendra, J.; Manzano, R.; Reyes, E.; Vicario, J. L.; Fernandez, E. Catalytic Stereoselective Borylative Transannular Reactions. Angew. Chem. Int. Ed. 2020, 59, 2100–2104.
- 17 Liu, B.; Qiu, H.; Chen, X.; Li, W.; Zhang, J. Copper-catalyzed asymmetric tandem borylative addition and aldol cyclization. Org. Chem. Front. 2020, 7, 2492–2498.
- 18 Larin, E. M.; Loup, J.; Polishchuk, I.; Ross, R. J.; Whyte, A.; Lautens, M. Enantio- and diastereoselective conjugate borylation/Mannich cyclization. Chem. Sci. 2020, 11, 5716–5723.
- 19 Jadhav, S. B.; Dash, S. R.; Maurya, S.; Nanubolu, J. B.; Vanka, K.; Chegondi, R. Enantioselective Cu(I)-catalyzed borylative cyclization of enone-tethered cyclohexadienones and mechanistic insights. Nat. Commun. 2022, 13, 854.
- 20 Khalse, L. D.; Gorad, S. S.; Ghorai, P. Enantio- and Diastereoselective Cu(II)-Catalyzed Conjugate Borylation/Michael Addition Cascade: Synthesis of Spiroindane Boronates. Org. Lett. 2022, 24, 7566–7571.
- 21
Yanfei, L.; Xuetao, L.; Zheng, Z.; Yiliang, Z.; Xiuping, Y.; Jianjun, Y.; Simin, W.; Wei, G.; Qian, Z.; Tao, X. Enantioselective copper-catalyzed dearomative borylative cyclization of indoles and mechanistic insights. Sci. China Chem. 2024, 67, https://doi.org/10.1007/s11426–024–2214–0.
10.1007/s11426–024–2214–0 Google Scholar
- 22 Tan, Y.-X.; Zhan, F.; Xie, P.-P.; Zhang, S.-Q.; Wang, Y.-F.; Li, Q.-H.; Tian, P.; Hong, X.; Lin, G.-Q. Rhodium(III)-Catalyzed Asymmetric Borylative Cyclization of Cyclohexadienone-Containing 1,6-Dienes: An Experimental and DFT Study. J. Am. Chem. Soc. 2019, 141, 12770–12779.
- 23 Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Enantioselective Borylative Dearomatization of Indoles through Copper(I) Catalysis. Angew. Chem. Int. Ed. 2015, 54, 8809–8813.
- 24 Hayama, K.; Kubota, K.; Iwamoto, H.; Ito, H. Copper(I)-catalyzed Diastereoselective Dearomative Carboborylation of Indoles. Chem. Lett. 2017, 46, 1800–1802.
- 25 Chen, B.; Cao, P.; Liao, Y.; Wang, M.; Liao, J. Enantioselective Copper-Catalyzed Methylboration of Alkenes. Org. Lett. 2018, 20, 1346–1349.
- 26 Han, S.; Shen, X.; Wu, X.; Xie, C.; Zi, G.; Hou, G. Highly diastereo- and enantioselective copper-catalyzed methylboration of 1,2-dihydroquinolines and 2H-chromenes. Org. Chem. Front. 2023, 10, 806–812.
- 27 Manna, S.; Dherbassy, Q.; Perry, G. J. P.; Procter, D. J. Enantio- and Diastereoselective Synthesis of Homopropargyl Amines by Copper-Catalyzed Coupling of Imines, 1,3-Enynes, and Diborons. Angew. Chem. Int. Ed. 2020, 59, 4879–4882.
- 28(a) Kim, N.; Han, J. T.; Ryu, D. H.; Yun, J. Copper-Catalyzed Asymmetric Borylallylation of Vinyl Arenes. Org. Lett. 2017, 19, 6144–6147; (b) Pineiro-Suarez, M.; Alvarez-Constantino, A. M.; Fananas-Mastral, M. Copper-Catalyzed Enantioselective Borylative Allyl-Allyl Coupling of Allenes and Allylic gem-Dichlorides. ACS Catal. 2023, 13, 5578–5583; (c) Chaves-Pouso, A.; Alvarez-Constantino, A. M.; Fananas-Mastral, M. Enantio- and Diastereoselective Copper- Catalyzed Allylboration of Alkynes with Allylic gem-Dichlorides. Angew. Chem. Int. Ed. 2022, 61, e202117696; (d) Liu, S.; Ding, K.; Su, B. Enantioselective Synthesis of Secondary Homoallyl Borons by Copper-Catalyzed 1,1-Borylallylation of Terminal Alkynes. ACS Catal. 2024, 14, 12102–12109; (e) Wang, S.; Chen, K.; Niu, J.; Guo, X.; Yuan, X.; Yin, J.; Zhu, B.; Shi, D.; Guan, W.; Xiong, T.; Zhang, Q. Copper-Catalyzed Regiodivergent Asymmetric Difunctionalization of Terminal Alkynes. Angew. Chem. Int. Ed. 2024, 63, e202410833.
- 29 Lu, L.; Chen, S.; Kong, W.; Gao, B.; Li, Y.; Zhu, L.; Yin, G. Enantioselective Synthesis of β-Aminoboronic Acids via Borylalkylation of Enamides. J. Am. Chem. Soc. 2024, 146, 16639–16647.
- 30 Yang, Z.; Li, P.; Lu, H.; Li, G. Copper-Catalyzed Asymmetric Borylacylation of Styrene and Indene Derivatives. J. Org. Chem. 2021, 86, 4616–4624.
- 31
Nishino, S.; Hirano, K. Copper-Catalyzed Regio- and Diastereoselective Borylacylation of α,β-Unsaturated Esters. Asian J. Org. Chem. 2022, 12, e202200636.
10.1002/ajoc.202200636 Google Scholar
- 32 Semba, K.; Nakao, Y. Arylboration of Alkenes by Cooperative Palladium/Copper Catalysis. J. Am. Chem. Soc. 2014, 136, 7567–7570.
- 33(a) Logan, K. M.; Smith, K. B.; Brown, M. K. Copper/Palladium Synergistic Catalysis for the syn- and anti-Selective Carboboration of Alkenes. Angew. Chem. Int. Ed. 2015, 54, 5228–5231; (b) Smith, K. B.; Logan, K. M.; You, W.; Brown, M. K. Alkene Carboboration Enabled by Synergistic Catalysis. Chem. Eur. J. 2014, 20, 12032–12036.
- 34 Jia, T.; Cao, P.; Wang, B.; Lou, Y.; Yin, X.; Wang, M.; Liao, J. A Cu/Pd Cooperative Catalysis for Enantioselective Allylboration of Alkenes. J. Am. Chem. Soc. 2015, 137, 13760–13763.
- 35(a) Friis, S. D.; Pirnot, M. T.; Buchwald, S. L. Asymmetric Hydroarylation of Vinylarenes Using a Synergistic Combination of CuH and Pd Catalysis. J. Am. Chem. Soc. 2016, 138, 8372–8375; (b) Semba, K.; Ariyama, K.; Zheng, H.; Kameyama, R.; Sakaki, S.; Nakao, Y. Reductive Cross-Coupling of Conjugated Arylalkenes and Aryl Bromides with Hydrosilanes by Cooperative Palladium/Copper Catalysis. Angew. Chem. Int. Ed. 2016, 55, 6275–6279; (c) Sardini, S. R.; Brown, M. K. Catalyst Controlled Regiodivergent Arylboration of Dienes. J. Am. Chem. Soc. 2017, 139, 9823–9826; (d) Crook, P. F.; Lear, A. R.; Suman, D.; Brown, M. K. Cu/Pd-catalyzed arylboration of a 1-silyl-1,3-cyclohexadiene for stereocontrolled and diverse cyclohexane/ene synthesis. Chem. Sci. 2023, 14, 10467–10470.
- 36 Logan, K. M.; Brown, M. K. Catalytic Enantioselective Arylboration of Alkenylarenes. Angew. Chem. Int. Ed. 2017, 56, 851–855.
- 37 Chen, B.; Cao, P.; Yin, X.; Liao, Y.; Jiang, L.; Ye, J.; Wang, M.; Liao, J. Modular Synthesis of Enantioenriched 1,1,2-Triarylethanes by an Enantioselective Arylboration and Cross-Coupling Sequence. ACS Catal. 2017, 7, 2425–2429.
- 38 Lee, H.; Lee, S.; Yun, J. Pd-Catalyzed Stereospecific Cross-Coupling of Chiral α-Borylalkylcopper Species with Aryl Bromides. J. Am. Chem. Soc. 2020, 10, 2069–2073.
- 39 Yang, K. S.; Gurak, J. A. Jr.; Liu, Z.; Engle, K. M. Catalytic, Regioselective Hydrocarbofunctionalization of Unactivated Alkenes with Diverse C–H Nucleophiles. J. Am. Chem. Soc. 2016, 138, 14705–14712.
- 40 Wang, H.; Bai, Z.; Jiao, T.; Deng, Z.; Tong, H.; He, G.; Peng, Q.; Chen, G. Palladium-Catalyzed Amide-Directed Enantioselective Hydrocarbofunctionalization of Unactivated Alkenes Using a Chiral Monodentate Oxazoline Ligand. J. Am. Chem. Soc. 2018, 140, 3542–3546.
- 41 Liu, Z.; Li, X.; Zeng, T.; Engle, K. M. Directed, Palladium(II)-Catalyzed Enantioselective anti-Carboboration of Alkenyl Carbonyl Compounds. ACS Catal. 2019, 9, 3260–3265.
- 42 Bai, Z.; Zheng, S.; Bai, Z.; Song, F.; Wang, H.; Peng, Q.; Chen, G.; He, G. Palladium-Catalyzed Amide-Directed Enantioselective Carboboration of Unactivated Alkenes Using a Chiral Monodentate Oxazoline Ligand. ACS Catal. 2019, 9, 6502–6509.
- 43 Zhang, P.; Xing, M.; Guan, Q.; Zhang, J.; Zhao, Q.; Zhang, C. Pd-Catalyzed Stereoselective 1,2-Aryboration of Alkenylarenes. Org. Lett. 2019, 21, 8106–8109.
- 44 Wang, C.; Xi, Y.; Xia, T.; Qu, J.; Chen, Y. Pd(0)-Catalyzed Diastereoselective and Enantioselective Intermolecular Heck−Miyaura Borylation of Internal Enamides for the β-Aminoboronate Ester Synthesis. ACS Catal. 2024, 14, 418–425.
- 45 Shen, C.; Zeidan, N.; Wu, Q.; Breuers, C. B. J.; Liu, R.-R.; Jia, Y.-X.; Lautens, M. Pd-catalyzed dearomative arylborylation of indoles. Chem. Sci. 2019, 10, 3118–3122.
- 46 Gao, M.; Thorpe, S. B.; Santos, W. L. sp2−sp3 Hybridized Mixed Diboron: Synthesis, Characterization, and Copper-Catalyzed β-Boration of α,β-Unsaturated Conjugated Compounds. Org. Lett. 2009, 11, 3478–3481.
- 47 Baker, R. T.; Nguyen, P.; Marder, T. B.; Westcott, S. A. Transition Metal Catalyzed Diboration of Vinylarenes. Angew. Chem. Int. Ed. 1995, 34, 1336–1338.
- 48(a) Ishiyama, T.; Yamamoto, M.; Miyaura, N. Diboration of alkenes with bis(pinacolato)diboron catalysed by a platinum(0) complex. Chem. Commun. 1997, 689–690; (b) Iverson, C. N.; Smith, M. R. Efficient Olefin Diboration by a Base-Free Platinum Catalyst. Organometallics 1997, 16, 2757–2759.
- 49 Dai, C.; Marder, T. B.; Robins, E. G.; Yufit, D. S.; Howard, J. A. K.; Marder, T. B.; Scott, A. J.; Clegg, W. Rhodium catalysed diboration of unstrained internal alkenes and a new and general route to zwitterionic [L2Rh(η6-catBcat)] (cat = 1,2-O2C6H4) complexes. Chem. Commun. 1998, 1983–1984.
- 50 Ramírez, J.; Corberán, R.; Sanaú, M.; Peris, E.; Fernandez, E. Unprecedented use of silver(i) N-heterocyclic carbene complexes for the catalytic preparation of 1,2-bis(boronate) esters. Chem. Commun. 2005, 3056–3058.
- 51(a) Lee, Y.; Jang, H.; Hoveyda, A. H. Vicinal Diboronates in High Enantiomeric Purity through Tandem Site-Selective NHC−Cu-Catalyzed Boron−Copper Additions to Terminal Alkynes. J. Am. Chem. Soc. 2009, 131, 18234–18235; (b) Takaya, J.; Iwasawa, N. Catalytic, Direct Synthesis of Bis(boronate) Compounds. ACS Catal. 2012, 2, 1993–2006; (c) Coombs, J. R.; Zhang, L.; Morken, J. P. Enantiomerically Enriched Tris(boronates): Readily Accessible Conjunctive Reagents for Asymmetric Synthesis. J. Am. Chem. Soc. 2014, 136, 16140–16143; (d) Teresa, J.; Velado, M.; Fernández de la Pradilla, R.; Viso, A.; Lozano, B.; Tortosa, M. Enantioselective Suzuki cross-coupling of 1,2-diboryl cyclopropanes. Chem. Sci. 2023, 14, 1575–1581; (e) Ji, C.; Gao, D. Recent Advances in Catalytic Asymmetric Synthesis of Chiral 1,2-Bis(boronic) Esters. Chin. J. Org. Chem. 2024, 44, 1385–1402.
- 52 Morgan, J. B.; Miller, S. P.; Morken, J. P. Rhodium-Catalyzed Enantioselective Diboration of Simple Alkenes. J. Am. Chem. Soc. 2003, 125, 8702–8703.
- 53 Trudeau, S.; Morgan, J. B.; Shrestha, M.; Morken, J. P. Rh-Catalyzed Enantioselective Diboration of Simple Alkenes: Reaction Development and Substrate Scope. J. Org. Chem. 2005, 70, 9538–9544.
- 54(a) Baker, S. J.; Tomsho, J. W.; Benkovic, S. J. Boron-containing inhibitors of synthetases. Chem. Soc. Rev. 2011, 40, 4279–4285; (b) Diaz, D. B.; Yudin, A. K. The versatility of boron in biological target engagement. Nat. Chem. 2017, 9, 731; (c) Yang, F.; Zhu, M.-Y.; Zhang, J.-Y.; Zhou, H.-C. Synthesis of biologically active boron-containing compounds. MedChemComm 2018, 9, 201–211.
- 55 Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Regioselective and Stereospecific Copper-Catalyzed Aminoboration of Styrenes with Bis(pinacolato)diboron and O-Benzoyl-N,N-dialkylhydroxylamines. J. Am. Chem. Soc. 2013, 135, 4934–4937.
- 56
Wu, L.; Zatolochnaya, O.; Qu, B.; Wu, L.; Wells, L. A.; Kozlowski, M. C.; Senanayake, C. H.; Song, J. J.; Zhang, Y. Cu-Catalyzed Asymmetric Aminoboration of E-Vinylarenes with pivZPhos as the Ligand. Org. Lett. 2019, 12, 8952–8956.
10.1021/acs.orglett.9b03328 Google Scholar
- 57 Nishino, S.; Nishii, Y.; Hirano, K. Anti-Selective Synthesis of β-Boryl-α-Amino Acid Derivatives by Cu-Catalysed Borylamination of α,β-Unsaturated Esters. Chem. Sci. 2022, 13, 14387–14394.
- 58 Sakae, R.; Hirano, K.; Satoh, T.; Miura, M. Copper-Catalyzed Stereoselective Aminoboration of Bicyclic Alkenes. Angew. Chem. Int. Ed. 2015, 54, 613–617.
- 59 Nishikawa, D.; Hirano, K.; Miura, M. Copper-Catalyzed Regio- and Stereoselective Aminoboration of Alkenylboronates. Org. Lett. 2016, 18, 4856–4859.
- 60 Palau-Lluch, G.; Fernández, E. Building Functionality through Sequential C–B and C–F Bond Formation. Adv. Synth. Catal. 2013, 355, 1464–1470.
- 61 Jia, T.; Cao, P.; Wang, D.; Lou, Y.; Liao, J. Copper-Catalyzed Asymmetric Three-Component Borylstannation: Enantioselective Formation of C–Sn Bond. Chem. Eur. J. 2015, 21, 4918–4922.
- 62 Yuan, X.; Zhang, Y.; Li, Y.; Yin, J.; Wang, S.; Xiong, T.; Zhang, Q. Asymmetric Radical Oxyboration of β-Substituted Styrenes via Late-Stage Stereomutation. Angew. Chem. Int. Ed. 2023, 62, e202313770.