Efficient All-Polymer Solar Cells Enabled by a Novel Medium Bandgap Guest Acceptor
Yongdie Meng
College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorLuting Tang
College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorCorresponding Author
Manjun Xiao
College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorWenjing Zhou
College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorNana Li
College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105 China
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China
Search for more papers by this authorCorresponding Author
Jianchao Jia
Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Tao Jia
School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, Guangdong, 510665 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorWenyan Su
School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi, 710054 China
Search for more papers by this authorZhaozhao Bi
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China
Search for more papers by this authorWenhong Peng
School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, Jiangsu, 213164 China
Search for more papers by this authorBaobing Fan
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorAlex K.-Y. Jen
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorWei Ma
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China
Search for more papers by this authorCorresponding Author
Qunping Fan
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorYongdie Meng
College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorLuting Tang
College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorCorresponding Author
Manjun Xiao
College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorWenjing Zhou
College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105 China
Search for more papers by this authorNana Li
College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application (Ministry of Education), Xiangtan University, Xiangtan, Hunan, 411105 China
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China
Search for more papers by this authorCorresponding Author
Jianchao Jia
Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510665 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Tao Jia
School of Optoelectronic Engineering, School of Mechanical Engineering, Guangdong Polytechnic Normal University, Guangzhou, Guangdong, 510665 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorWenyan Su
School of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi, 710054 China
Search for more papers by this authorZhaozhao Bi
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China
Search for more papers by this authorWenhong Peng
School of Materials Engineering, Changzhou Vocational Institute of Industry Technology, Changzhou, Jiangsu, 213164 China
Search for more papers by this authorBaobing Fan
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorAlex K.-Y. Jen
Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077 China
Search for more papers by this authorWei Ma
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China
Search for more papers by this authorCorresponding Author
Qunping Fan
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China
E-mail: [email protected]; [email protected]; [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Near-infrared (NIR)-absorbing polymerized small molecule acceptors (PSMAs) based on a Y-series backbone (such as PY-IT) have been widely developed to fabricate efficient all-polymer solar cells (all-PSCs). However, medium-bandgap PSMAs are often overlooked, while they as the third component can be expected to boost power conversion efficiencies (PCEs) of all-PSCs, mainly due to their up-shifted lowest unoccupied molecular orbital (LUMO) energy level, complimentary absorption, and diverse intermolecular interaction compared to the NIR-absorbing host acceptor. Herein, an IDIC-series medium-bandgap PSMA (P-ITTC) is developed and introduced as the third component into D18/PY-IT host, which can not only form complementary absorption and cascade energy level, but also finely optimize active layer morphology. Therefore, compared to the D18/PY-IT based parental all-PSCs, the ternary all-PSCs based on D18/PY-IT:P-ITTC obtain an increased exciton dissociation, charge transport, carrier lifetime, as well as suppressed charge recombination and energy loss. As a result, the ternary all-PSCs achieve a high PCE of 17.64% with a photovoltage of 0.96 V, both of which are among the top values in layer-by-layer typed all-PSCs. This work provides a method for the design and selection of the medium-bandgap third component to fabricate efficient all-PSCs.
Supporting Information
Filename | Description |
---|---|
CJOC_202400679_sm_suppl.pdfPDF document, 1.6 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Shi, S.; Chen, P.; Chen, Y.; Feng, K.; Liu, B.; Chen, J.; Liao, Q.; Tu, B.; Luo, J.; Su, M.; Guo, H.; Kim, M. G.; Facchetti, A.; Guo, X. A Narrow-Bandgap n-Type Polymer Semiconductor Enabling Efficient All-Polymer Solar Cells. Adv. Mater. 2019, 31, 1905161.
- 2 Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. Chem. Rev. 2019, 119, 8028–8086.
- 3 Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R.; Liu, F.; Yip, H. L.; Li, N.; Ma, Y.; Brabec, C. J.; Huang, F.; Cao, Y. Surpassing the 10% Efficiency Milestone for 1-cm2 All-Polymer Solar Cells. Nat. Commun. 2019, 10, 4100.
- 4 Sun, H.; Yu, H.; Shi, Y.; Yu, J.; Peng, Z.; Zhang, X.; Liu, B.; Wang, J.; Singh, R.; Lee, J.; Li, Y.; Wei, Z.; Liao, Q.; Kan, Z.; Ye, L.; Yan, H.; Gao, F.; Guo, X. A Narrow-Bandgap N-Type Polymer with an Acceptor-Acceptor Backbone Enabling Efficient All-Polymer Solar Cells. Adv. Mater. 2020, 32, 2004183.
- 5 Fan, Q.; Su, W.; Chen, S.; Liu, T.; Zhuang, W.; Ma, R.; Wen, X.; Yin, Z.; Luo, Z.; Guo, X.; Hou, L.; Moth-Poulsen, K.; Li, Y.; Zhang, Z.; Yang, C.; Yu, D.; Yan, H.; Zhang, M.; Wang, E. A Non-Conjugated Polymer Acceptor for Efficient and Thermally Stable All-Polymer Solar Cells. Angew. Chem. Int. Ed. 2020, 59, 19835.
- 6 Yang, J.; Xiao, B.; Tang, A.; Li, J.; Wang, X.; Zhou, E. Aromatic- Diimide-Based n-Type Conjugated Polymers for All-Polymer Solar Cell Applications. Adv. Mater. 2019, 31, 1804699.
- 7 Wang, Z.; Wang, X.; Tu, L.; Wang, H.; Du, M.; Dai, T.; Guo, Q.; Shi, Y.; Zhou, E. Dithienoquinoxalineimide-Based Polymer Donor Enables All-Polymer Solar Cells Over 19 % Efficiency. Angew. Chem. Int. Ed. 2024, 63, e202319755.
- 8 Zhou, K. K.; Xian, K. H.; Ma, R. J.; Liu, J. W.; Gao, M. Y.; Li, S. M.; Liu, T.; Chen, Y.; Geng, Y. H.; Ye, L. Correlating Miscibility, Mechanical Parameters, and Stability of Ternary Polymer Blends for High-Performance Solar Cells. Energy Environ. Sci. 2023, 16, 5052–5064.
- 9 Zhang, T.; Xu, Y.; Yao, H.; Zhang, J.; Bi, P.; Chen, Z.; Wang, J.; Cui, Y.; Ma, L.; Xian, K.; Li, Z.; Hao, X.; Wei, Z.; Hou, J. Suppressing the Energetic Disorder of All-Polymer Solar Cells Enables over 18% Efficiency. Energy Environ. Sci. 2023, 16, 1581–1589.
- 10 Zeng, R.; Zhu, L.; Zhang, M.; Zhong, W.; Zhou, G.; Zhuang, J.; Hao, T.; Zhou, Z.; Zhou, L.; Hartmann, N.; Xue, X.; Jing, H.; Han, F.; Bai, Y.; Wu, H.; Tang, Z.; Zou, Y.; Zhu, H.; Chen, C. C.; Zhang, Y.; Liu, F. All-Polymer Organic Solar Cells with Nano-to-Micron Hierarchical Morphology and Large Light Receiving Angle. Nat. Commun. 2023, 14, 4148.
- 11 Ma, R.; Fan, Q.; Dela Peña, T. A.; Wu, B.; Liu, H.; Wu, Q.; Wei, Q.; Wu, J.; Lu, X.; Li, M.; Ma, W.; Li, G. Unveiling the Morphological and Physical Mechanism of Burn-in Loss Alleviation by Ternary Matrix toward Stable and Efficient All-Polymer Solar Cells. Adv. Mater. 2023, 35, 2212275.
- 12 Ge, Z.; Qiao, J.; Li, Y.; Song, J.; Zhang, C.; Fu, Z.; Jee, M. H.; Hao, X.; Woo, H. Y.; Sun, Y. Over 18% Efficiency of All-Polymer Solar Cells with Long-Term Stability Enabled by Y6 as a Solid Additive. Adv. Mater. 2023, 35, 2301906.
- 13
Yu, X.; Ding, P.; Yang, D.; Yan, P.; Wang, H.; Yang, S.; Wu, J.; Wang, Z.; Sun, H.; Chen, Z.; Xie, L.; Ge, Z. Self-Assembled Molecules with Asymmetric Backbone for Highly Stable Binary Organic Solar Cells with 19.7 % Efficiency. Angew Chem. Int. Ed. 2024, 136, e202401518.
10.1002/ange.202401518 Google Scholar
- 14 Sun, Y.; Wang, L.; Guo, C.; Xiao, J.; Liu, C.; Chen, C.; Xia, W.; Gan, Z.; Cheng, J.; Zhou, J.; Chen, Z.; Zhou, J.; Liu, D.; Wang, T.; Li, W. π-Extended Nonfullerene Acceptor for Compressed Molecular Packing in Organic Solar Cells to Achieve over 20% Efficiency. J. Am. Chem. Soc. 2024, 146, 12011–12019.
- 15 Guo, C.; Sun, Y.; Wang, L.; Liu, C.; Chen, C.; Cheng, J.; Xia, W.; Gan, Z.; Zhou, J.; Chen, Z.; Zhou, J.; Liu, D.; Guo, J.; Li, W.; Wang, T. Light-Induced Quinone Conformation of Polymer Donors toward 19.9% Efficiency Organic Solar Cells. Energy Environ. Sci. 2024, 17, 2492–2499.
- 16 Wang, T.; Sun, R.; Wu, Y.; Wang, W.; Zhang, M.; Min, J. Constructing a Double-Cable Polymer Acceptor for Efficient All-Polymer Solar Cells with a Non-Radiative Recombination Energy Loss of 0.16 eV. Chem. Mater. 2022, 34, 9970–9981.
- 17 Xiao, H.; Lv, J.; Liu, M.; Guo, X.; Xia, X.; Lu, X.; Zhang, M. An Efficient Polymer Acceptor with Fluorinated Linkers Enables All Polymer Solar Cells with an Efficiency of 15.7%. J. Mater. Chem. A 2023, 11, 5584–5592.
- 18 Zhang, Z. G.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a Strongly Absorbing Low-Bandgap Polymer Acceptor for High-Performance All-Polymer Solar Cells. Angew. Chem. Int. Ed. 2017, 56, 13503–13507.
- 19 Sun, R.; Wang, W.; Yu, H.; Chen, Z.; Xia, X.; Shen, H.; Guo, J.; Shi, M.; Zheng, Y.; Wu, Y.; Yang, W.; Wang, T.; Wu, Q.; Yang, Y.; Lu, X.; Xia, J.; Brabec, C. J.; Yan, H.; Li, Y.; Min, J. Achieving over 17% Efficiency of Ternary All-Polymer Solar Cells with Two Well-Compatible Polymer Acceptors. Joule 2021, 5, 1548–1565.
- 20 Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y. 14.4% Efficiency All-Polymer Solar Cell with Broad Absorption and Low Energy Loss Enabled by a Novel Polymer Acceptor. Nano Energy 2020, 72, 104718.
- 21 Luo, Z.; Liu, T.; Ma, R.; Xiao, Y.; Zhan, L.; Zhang, G.; Sun, H.; Ni, F.; Chai, G.; Wang, J.; Zhong, C.; Zou, Y.; Guo, X.; Lu, X.; Chen, H.; Yan, H.; Yang, C. Precisely Controlling the Position of Bromine on the End Group Enables Well-Regular Polymer Acceptors for All-Polymer Solar Cells with Efficiencies over 15%. Adv. Mater. 2020, 32, 2005942.
- 22 Du, J.; Hu, K.; Zhang, J.; Meng, L.; Yue, J.; Angunawela, I.; Yan, H.; Qin, S.; Kong, X.; Zhang, Z.; Guan, B.; Ade, H.; Li, Y. Polymerized Small Molecular Acceptor Based All-Polymer Solar Cells with an Efficiency of 16.16% via Tuning Polymer Blend Morphology by Molecular Design. Nat. Commun. 2021, 12, 5264.
- 23 Yu, H.; Wang, Y.; Kim, H. K.; Wu, X.; Li, Y.; Yao, Z.; Pan, M.; Zou, X.; Zhang, J.; Chen, S.; Zhao, D.; Huang, F.; Lu, X.; Zhu, Z.; Yan, H. A Vinylene-Linker-Based Polymer Acceptor Featuring a Coplanar and Rigid Molecular Conformation Enables High-Performance All-Polymer Solar Cells with over 17% Efficiency. Adv. Mater. 2022, 34, 2200361.
- 24 Ma, S.; Li, B.; Gong, S.; Wang, J.; Liu, B.; Young Jeong, S.; Chen, X.; Young Woo, H.; Feng, K.; Guo, X. Biselenophene Imide: Enabling Polymer Acceptor with High Electron Mobility for High-Performance All-Polymer Solar Cells. Angew. Chem. Int. Ed. 2023, 62, 202308306.
- 25 Dou, Y.; Hong, L.; Jing, J.; Jia, T.; Zhang, J.; Zhang, K.; Huang, F. High-Efficiency Layer-by-Layer All-Polymer Solar Cell Enabled by Bottom-Layer Optimization. Sol. RRL 2023, 7, 2300599.
- 26 Yue, Y.; Zheng, B.; Ni, J.; Yang, W.; Huo, L.; Wang, J.; Jiang, L. All-Polymer Solar Cells with 17% Efficiency Enabled by the "End-Capped" Ternary Strategy. Adv. Sci. 2022, 9, 2204030.
- 27 Zhang, W.; Sun, C.; Angunawela, I.; Meng, L.; Qin, S.; Zhou, L.; Li, S.; Zhuo, H.; Yang, G.; Zhang, Z. G.; Ade, H.; Li, Y. 16.52% Efficiency All-Polymer Solar Cells with High Tolerance of the Photoactive Layer Thickness. Adv. Mater. 2022, 34, 2108749.
- 28 Cai, Y.; Xie, C.; Li, Q.; Liu, C.; Gao, J.; Jee, M. H.; Qiao, J.; Li, Y.; Song, J.; Hao, X.; Woo, H. Y.; Tang, Z.; Zhou, Y.; Zhang, C.; Huang, H.; Sun, Y. Improved Molecular Ordering in a Ternary Blend Enables All-Polymer Solar Cells over 18% Efficiency. Adv. Mater. 2023, 35, 2208165.
- 29 Ma, R.; Li, H.; Dela Peña, T. A.; Xie, X.; Fong, P. W. K.; Wei, Q.; Yan, C.; Wu, J.; Cheng, P.; Li, M.; Li, G. Tunable Donor Aggregation Dominance in a Ternary Matrix of All-Polymer Blends with Improved Efficiency and Stability. Adv. Mater. 2024, 36, 2304632.
- 30 Song, J.; Zhang, C.; Li, C.; Qiao, J.; Yu, J.; Gao, J.; Wang, X.; Hao, X.; Tang, Z.; Lu, G.; Yang, R.; Yan, H.; Sun, Y. Non-halogenated Solvent-Processed Organic Solar Cells with Approaching 20% Efficiency and Improved Photostability. Angew. Chem. Int. Ed. 2024, 63, e202404297.
- 31 Liu, K.; Jiang, Y.; Ran, G.; Liu, F.; Zhang, W.; Zhu, X. 19.7% Efficiency Binary Organic Solar Cells Achieved by Selective Core Fluorination of Nonfullerene Electron Acceptors. Joule 2024, 8, 835–851.
- 32 Liu, X.; Li, X.; Wang, L.; Fang, J.; Yang, C. Synergistic Effects of the Processing Solvent and Additive on the Production of Efficient All-Polymer Solar Cells. Nanoscale 2020, 12, 4945–4952.
- 33 Wu, Q.; Wang, W.; Wu, Y.; Chen, Z.; Guo, J.; Sun, R.; Guo, J.; Yang, Y.; Min, J. High-Performance All-Polymer Solar Cells with a Pseudo-Bilayer Configuration Enabled by a Stepwise Optimization Strategy. Adv. Funct. Mater. 2021, 31, 2010411.
- 34 Li, Q.; Jia, T.; Wang, L.-M.; Liu, S.; Liao, X.; Cao, Z.; Zhang, J.; Zhan, X.; Zhu, T.; Cai, Y.-P.; Huang, F. Superior Layer-by-Layer Deposition Realizing P-i-N All-Polymer Solar Cells with Efficiency over 16% and Fill Factor over 77%. J. Mater. Chem. A 2022, 10, 10880–10891.
- 35 Liu, Z.; Ma, X.; Xu, W.; Zhang, S.; Xu, C.; Young Jeong, S.; Young Woo, H.; Zhou, Z.; Zhang, F. 15.28% Efficiency of Conventional Layer-by- Layer All-Polymer Solar Cells Superior to Bulk Heterojunction or Inverted Cells. Chem. Eng. J. 2022, 450, 138146.
- 36 Zhang, Y.; Wu, B.; He, Y.; Deng, W.; Li, J.; Li, J.; Qiao, N.; Xing, Y.; Yuan, X.; Li, N.; Brabec, C. J.; Wu, H.; Lu, G.; Duan, C.; Huang, F.; Cao, Y. Layer-by-Layer Processed Binary All-Polymer Solar Cells with Efficiency over 16% Enabled by Finely Optimized Morphology. Nano Energy 2022, 93, 106858.
- 37 Kim, Y. J.; Park, C. E. Well Defined Double Layers via Binary Solvent Mixtures for Highly Efficient Inverted All-Polymer Solar Cells. Org. Electron. 2018, 52, 301–308.
- 38 Fu, H.; Peng, Z.; Fan, Q.; Lin, F. R.; Qi, F.; Ran, Y.; Wu, Z.; Fan, B.; Jiang, K.; Woo, H. Y.; Lu, G.; Ade, H.; Jen, A. K. A Top-Down Strategy to Engineer Activelayer Morphology for Highly Efficient and Stable All-Polymer Solar Cells. Adv. Mater. 2022, 34, 2202608.
- 39 Wan, J.; Zhang, L.; He, Q.; Liu, S.; Huang, B.; Hu, L.; Zhou, W.; Chen, Y. High-Performance Pseudoplanar Heterojunction Ternary Organic Solar Cells with Nonfullerene Alloyed Acceptor. Adv. Funct. Mater. 2020, 30, 1909760.
- 40 Cui, F. Z.; Chen, Z. H.; Qiao, J. W.; Wang, T.; Lu, G. H.; Yin, H.; Hao, X. T. Ternary-Assisted Sequential Solution Deposition Enables Efficient All-Polymer Solar Cells with Tailored Vertical-Phase Distribution. Adv. Funct. Mater. 2022, 32, 2200478.
- 41 Wang, J.; Han, C.; Wen, S.; Bi, F.; Hu, Z.; Li, Y.; Yang, C.; Bao, X.; Chu, J. Achieving 17.94% Efficiency All-Polymer Solar Cells by Independently Induced D/A Orderly Stacking. Energy Environ. Sci. 2023, 16, 2327–2337.
- 42 Liu, T.; Yang, T.; Ma, R.; Zhan, L.; Luo, Z.; Zhang, G.; Li, Y.; Gao, K.; Xiao, Y.; Yu, J.; Zou, X.; Sun, H.; Zhang, M.; Dela Peña, T. A.; Xing, Z.; Liu, H.; Li, X.; Li, G.; Huang, J.; Duan, C.; Wong, K. S.; Lu, X.; Guo, X.; Gao, F.; Chen, H.; Huang, F.; Li, Y.; Li, Y.; Cao, Y.; Tang, B.; Yan, H. 16% Efficiency All-Polymer Organic Solar Cells Enabled by a Finely Tuned Morphology via the Design of Ternary Blend. Joule 2021, 5, 914–930.
- 43 Cui, F.-Z.; Chen, Z.; Qiao, J.-W.; Lu, P.; Du, X.; Qin, W.; Yin, H.; Hao, X.-T. Vertical-Phase-Locking Effect in Efficient and Stable All-Polymer- Hosted Solar Cells. ACS Energy Lett. 2022, 7, 3709–3717.
- 44 Hu, K.; Du, J.; Zhu, C.; Lai, W.; Li, J.; Xin, J.; Ma, W.; Zhang, Z.; Zhang, J.; Meng, L.; Li, Y. Chlorinated Polymerized Small Molecule Acceptor Enabling Ternary All-Polymer Solar Cells with over 16.6% Efficiency. Sci. China Chem. 2022, 65, 954–963.
- 45 Li, Y.; Song, J.; Dong, Y.; Jin, H.; Xin, J.; Wang, S.; Cai, Y.; Jiang, L.; Ma, W.; Tang, Z.; Sun, Y. Polymerized Small Molecular Acceptor with Branched Side Chains for All Polymer Solar Cells with Efficiency over 16.7. Adv. Mater. 2022, 34, 2110155.
- 46 Cao, C.; Wang, H.; Qiu, D.; Zhao, T.; Zhu, Y.; Lai, X.; Pu, M.; Li, Y.; Li, H.; Chen, H.; He, F. Quasiplanar Heterojunction All-Polymer Solar Cells: A Dual Approach to Stability. Adv. Funct. Mater. 2022, 32, 2201828.
- 47
Deng, J.; Huang, B.; Li, W.; Zhang, L.; Jeong, S. Y.; Huang, S.; Zhang, S.; Wu, F.; Xu, X.; Zou, G.; Woo, H. Y.; Chen, Y.; Chen, L. Ferroelectric Polymer Drives Performance Enhancement of Non-Fullerene Organic Solar Cells. Angew Chem. Int. Ed. 2022, 134, e202202177.
10.1002/ange.202202177 Google Scholar
- 48 Xiao, M.; Meng, Y.; Tang, L.; Li, P.; Tang, L.; Zhang, W.; Hu, B.; Yi, F.; Jia, T.; Cao, J.; Xu, C.; Lu, G.; Hao, X.; Ma, W.; Fan, Q. Solid Additive-Assisted Selective Optimization Strategy for Sequential Deposited Active Layers to Construct 19.16% Efficiency Binary Organic Solar Cells. Adv. Funct. Mater. 2024, 34, 2311216.
- 49 Xiao, M.; Liu, L.; Meng, Y.; Fan, B.; Su, W.; Jin, C.; Liao, L.; Yi, F.; Xu, C.; Zhang, R.; Jen, A. K. Y.; Ma, W.; Fan, Q. Approaching 19% Efficiency and Stable Binary Polymer Solar Cells Enabled by a Solidification Strategy of Solvent Additive. Sci. China Chem. 2023, 66, 1500–1510.
- 50 Gu, C.; Xiao, M.; Bao, X.; Han, L.; Zhu, D.; Wang, N.; Wen, S.; Zhu, W.; Yang, R. Design, Synthesis and Photovoltaic Properties of Two π-Bridged Cyclopentadithiophene-Based Polymers. Polym. Chem. 2014, 5, 6551–6557.
- 51 Hu, D.; Yang, Q.; Chen, H.; Wobben, F.; Le Corre, V. M.; Singh, R.; Liu, T.; Ma, R.; Tang, H.; Koster, L. J. A.; Duan, T.; Yan, H.; Kan, Z.; Xiao, Z.; Lu, S. 15.34% Efficiency All-Small-Molecule Organic Solar Cells with an Improved Fill Factor Enabled by a Fullerene Additive. Energy Environ. Sci. 2020, 13, 2134–2141.