In-situ Post-Synthetic Treatment of CsPbBr3 Perovskite Nanocrystals in Nanoporous Silica Microspheres
Danila A. Tatarinov
School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu, 215006 China
PhysNano Department, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorJinfeng Xie
School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu, 215006 China
Search for more papers by this authorQingyi Qian
School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu, 215006 China
Search for more papers by this authorQingqing Wang
School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu, 215006 China
Search for more papers by this authorNadezhda A. Maslova
Research Park, Saint Petersburg State University, St. Petersburg, 199034 Russia
Search for more papers by this authorLyubov N. Borodina
PhysNano Department, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorCorresponding Author
Aleksandr P. Litvin
PhysNano Department, ITMO University, St. Petersburg, 197101 Russia
School of Materials Science and Engineering, Jilin University, Changchun, Jilin, 130012 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
He Huang
School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu, 215006 China
E-mail: [email protected]; [email protected]Search for more papers by this authorDanila A. Tatarinov
School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu, 215006 China
PhysNano Department, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorJinfeng Xie
School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu, 215006 China
Search for more papers by this authorQingyi Qian
School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu, 215006 China
Search for more papers by this authorQingqing Wang
School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu, 215006 China
Search for more papers by this authorNadezhda A. Maslova
Research Park, Saint Petersburg State University, St. Petersburg, 199034 Russia
Search for more papers by this authorLyubov N. Borodina
PhysNano Department, ITMO University, St. Petersburg, 197101 Russia
Search for more papers by this authorCorresponding Author
Aleksandr P. Litvin
PhysNano Department, ITMO University, St. Petersburg, 197101 Russia
School of Materials Science and Engineering, Jilin University, Changchun, Jilin, 130012 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
He Huang
School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu, 215006 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Inorganic lead halide perovskite (LHP) nanostructures, represented by formula CsPbX3 (X = Cl, Br, I), have garnered considerable interest for their exceptional optical properties and diverse applications. Despite their potential, challenges such as environmental degradation persist. In-situ synthesis within protective materials pores is a promising way to address this issue. However, confining perovskite nanostructures into porous matrices during the synthesis can limit their photoluminescence quantum yield (PL QY) and tunability of optical properties. Various post-treatment approaches exist to improve the properties of LHP and achieve their desired functionalities, but these strategies have not been explored for LHP confined in mesoporous matrices. Here, we demonstrate the efficacy of in-situ post-synthetic treatments to improve the optical properties of CsPbBr3 nanocrystals grown in nanoporous silica microspheres. Surface passivation with Br– ion-containing precursors boosts PL QY, while anion-assisted cation doping with Mn2+ ions introduces a new PL band. The adjustment of precursor amount and doping duration enables precise control over the optical properties of LHP, while additional coating with a SiO2 shell enhances their stability in polar solvents, expanding the potential applications of these composites.
Supporting Information
Filename | Description |
---|---|
cjoc202400513-sup-0001-supinfo.pdfPDF document, 1 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science 2017, 358, 745–750.
- 2 Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem. Rev. 2019, 119, 3296–3348.
- 3
Dong, H.; Ran, C.; Gao, W.; Li, M.; Xia, Y.; Huang, W. Metal Halide Perovskite for Next-Generation Optoelectronics: Progresses and Prospects. eLight 2023, 3, 3.
10.1186/s43593-022-00033-z Google Scholar
- 4 Ren, K.; Yue, S.; Li, C.; Fang, Z.; Gasem, K. A. M.; Leszczynski, J.; Qu, S.; Wang, Z.; Fan, M. Metal Halide Perovskites for Photocatalysis Applications. J. Mater. Chem. A 2022, 10, 407–429.
- 5 Liu, M.; Grandhi, G. K.; Matta, S.; Mokurala, K.; Litvin, A.; Russo, S.; Vivo, P. Halide Perovskite Nanocrystal Emitters. Adv. Photonics Res. 2021, 2, 2000118.
- 6 Arumugam, G. M.; Karunakaran, S. K.; Galian, R. E.; Pérez-Prieto, J. Recent Progress in Lanthanide-Doped Inorganic Perovskite Nanocrystals and Nanoheterostructures: A Future Vision of Bioimaging. Nanomaterials 2022, 12, 2130.
- 7 Jain, U.; Soni, S.; Chauhan, N. Application of Perovskites in Bioimaging: The State-of-the-Art and Future Developments. Expert Rev. Mol. Diagn. 2022, 22, 867–880.
- 8 Zhong, C.-Y.; Xiao, L.; Zhou, J.; Chen, Z.; Chen, Y.; Liu, Z.-Q.; Zhang, J. Z. Two-Photon Photoluminescence and Bio-Imaging Application of Monodispersed Perovskite-in-Silica Nanocrystals with High Biocompatibility. Chem. Eng. J. 2022, 431, 134110.
- 9 Wei, Y.; Cheng, Z.; Lin, J. An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and Their Applications in Phosphor-Converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350.
- 10 Leijtens, T.; Bush, K.; Cheacharoen, R.; Beal, R.; Bowring, A.; McGehee, M. D. Towards Enabling Stable Lead Halide Perovskite Solar Cells; Interplay between Structural, Environmental, and Thermal Stability. J. Mater. Chem. A 2017, 5, 11483–11500.
- 11 Lou, S.; Xuan, T.; Wang, J. Stability: A Desiderated Problem for the Lead Halide Perovskites. Opt. Mater. X 2019, 1, 100023.
- 12 Xing, K.; Cao, S.; Yuan, X.; Zeng, R.; Li, H.; Zou, B.; Zhao, J. Thermal and Photo Stability of All Inorganic Lead Halide Perovskite Nanocrystals. Phys. Chem. Chem. Phys. 2021, 23, 17113–17128.
- 13 Krieg, F.; Ochsenbein, S. T.; Yakunin, S.; ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y.; Kumar, S.; Shih, C.-J.; Infante, I.; Kovalenko, M. V. Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Lett. 2018, 3, 641–646.
- 14 Wu, L.; Zhong, Q.; Yang, D.; Chen, M.; Hu, H.; Pan, Q.; Liu, H.; Cao, M.; Xu, Y.; Sun, B.; Zhang, Q. Improving the Stability and Size Tunability of Cesium Lead Halide Perovskite Nanocrystals Using Trioctylphosphine Oxide as the Capping Ligand. Langmuir 2017, 33, 12689–12696.
- 15 Děcká, K.; Pagano, F.; Frank, I.; Kratochwil, N.; Mihóková, E.; Auffray, E.; Čuba, V. Timing Performance of Lead Halide Perovskite Nanoscintillators Embedded in a Polystyrene Matrix. J. Mater. Chem. C 2022, 10, 12836–12843.
- 16 Ushakova, E. V.; Cherevkov, S. A.; Sokolova, A. V.; Li, Y.; Azizov, R. R.; Baranov, M. A.; Kurdyukov, D. A.; Yu Stovpiaga, E.; Golubev, V. G.; Rogach, A. L.; Baranov, A. V. Stable Luminescent Composite Microspheres Based on Porous Silica with Embedded CsPbBr3 Perovskite Nanocrystals. ChemNanoMat 2020, 6, 1080–1085.
- 17 Ushakova, E. V.; Matuhina, A. I.; Sokolova, A. V.; Cherevkov, S. A.; Dubavik, A.; Medvedev, O. S.; Litvin, A. P.; Kurdyukov, D. A.; Golubev, V. G.; Baranov, A. V. Enhanced Stability of the Optical Responses from All-Inorganic Perovskite Nanocrystals Embedded in a Synthetic Opal Matrix. Nanotechnology 2019, 30, 405206.
- 18 Pan, A.; Wu, Y.; Yan, K.; Yu, Y.; Jurow, M. J.; Ren, B.; Zhang, C.; Ding, S.; He, L.; Liu, Y. Stable Luminous Nanocomposites of Confined Mn2+-Doped Lead Halide Perovskite Nanocrystals in Mesoporous Silica Nanospheres as Orange Fluorophores. Inorg. Chem. 2019, 58, 3950–3958.
- 19 Dirin, D. N.; Protesescu, L.; Trummer, D.; Kochetygov, I. V.; Yakunin, S.; Krumeich, F.; Stadie, N. P.; Kovalenko, M. V. Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes. Nano Lett. 2016, 16, 5866–5874.
- 20 Cherevkov, S.; Azizov, R.; Sokolova, A.; Nautran, V.; Miruschenko, M.; Arefina, I.; Baranov, M.; Kurdyukov, D.; Stovpiaga, E.; Golubev, V.; Baranov, A.; Ushakova, E. Interface Chemical Modification between All-Inorganic Perovskite Nanocrystals and Porous Silica Microspheres for Composite Materials with Improved Emission. Nanomaterials 2021, 11, 119.
- 21 Wei, J.; Zheng, W.; Huang, P.; Gong, Z.; Liu, Y.; Lu, S.; Li, Z.; Chen, X. Direct Photoinduced Synthesis of Lead Halide Perovskite Nanocrystals and Nanocomposites. Nano Today 2021, 39, 101179.
- 22 Zheng, C.; Bi, C.; Huang, F.; Binks, D.; Tian, J. Stable and Strong Emission CsPbBr3 Quantum Dots by Surface Engineering for High-Performance Optoelectronic Films. ACS Appl. Mater. Interfaces 2019, 11, 25410–25416.
- 23 Gautier, R.; Paris, M.; Massuyeau, F. Exciton Self-Trapping in Hybrid Lead Halides: Role of Halogen. J. Am. Chem. Soc. 2019, 141, 12619–12623.
- 24 Tatarinov, D. A.; Skurlov, I. D.; Sokolova, A. V.; Shimko, A. A.; Danilov, D. V.; Timkina, Y. A.; Rider, M. A.; Zakharov, V. V.; Cherevkov, S. A.; Kuzmenko, N. K.; Koroleva, A. V.; Zhizhin, E. V.; Maslova, N. A.; Stovpiaga, E. Y.; Kurdyukov, D. A.; Golubev, V. G.; Zhang, X.; Zheng, W.; Tcypkin, A. N.; Litvin, A. P.; Rogach, A. L. Near-Infrared Two- Photon Excited Photoluminescence from Yb3+-Doped CsPbClxBr3−x Perovskite Nanocrystals Embedded into Amphiphilic Silica Microspheres. Nanoscale 2024, 16, 9011–9020.
- 25 Xiong, J.; Dai, Z.; Zhan, S.; Zhang, X.; Xue, X.; Liu, W.; Zhang, Z.; Huang, Y.; Dai, Q.; Zhang, J. Multifunctional Passivation Strategy Based on Tetraoctylammonium Bromide for Efficient Inverted Perovskite Solar Cells. Nano Energy 2021, 84, 105882.
- 26 Duong, T.; Pham, H.; Yin, Y.; Peng, J.; Mahmud, M. A.; Wu, Y.; Shen, H.; Zheng, J.; Tran-Phu, T.; Lu, T.; Li, L.; Kumar, A.; Andersson, G. G.; Ho-Baillie, A.; Liu, Y.; White, T.; Weber, K.; Catchpole, K. Efficient and Stable Wide Bandgap Perovskite Solar Cells through Surface Passivation with Long Alkyl Chain Organic Cations. J. Mater. Chem. A 2021, 9, 18454–18465.
- 27 Wu, Y.; Wei, C.; Li, X.; Li, Y.; Qiu, S.; Shen, W.; Cai, B.; Sun, Z.; Yang, D.; Deng, Z.; Zeng, H. In Situ Passivation of PbBr64– Octahedra toward Blue Luminescent CsPbBr3 Nanoplatelets with Near 100% Absolute Quantum Yield. ACS Energy Lett. 2018, 3, 2030–2037.
- 28 Zhao, Y.-Y.; Liu, Y.-F.; Bi, Y.-G.; Li, C.-H.; Wang, Y.-F.; Li, H.-W.; Zhang, Q.-W.; Lv, C.; Wu, Y.-Q. Improved Performance of CsPbBr3 Light- Emitting Diodes Based on Zinc Bromide Passivated Quantum Dots. Org. Electron. 2023, 116, 106775.
- 29 Bodnarchuk, M. I.; Boehme, S. C.; ten Brinck, S.; Bernasconi, C.; Shynkarenko, Y.; Krieg, F.; Widmer, R.; Aeschlimann, B.; Günther, D.; Kovalenko, M. V.; Infante, I. Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals. ACS Energy Lett. 2019, 4, 63–74.
- 30 Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.
- 31 Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.
- 32 Zhao, C.; Shi, J.; Huang, H.; Zhao, Q.; Zhang, X.; Yuan, J. Cation Exchange in Lead Halide Perovskite Quantum Dots toward Functional Optoelectronic Applications. Small Sci. 2024, 4, 2300132.
- 33 Tepliakov, N. V.; Sokolova, A. V.; Tatarinov, D. A.; Zhang, X.; Zheng, W.; Litvin, A. P.; Rogach, A. L. Trap-Mediated Sensitization Governs Near-Infrared Emission from Yb3+-Doped Mixed-Halide CsPbClxBr3–x Perovskite Nanocrystals. Nano Lett. 2024, 24, 3347–3354.
- 34 Van der Stam, W.; Geuchies, J. J.; Altantzis, T.; Van Den Bos, K. H. W.; Meeldijk, J. D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; De Mello Donega, C. Highly Emissive Divalent-Ion-Doped Colloidal CsPb1-XMxBr3 Perovskite Nanocrystals through Cation Exchange. J. Am. Chem. Soc. 2017, 139, 4087–4097.
- 35 Mir, W. J.; Mahor, Y.; Lohar, A.; Jagadeeswararao, M.; Das, S.; Mahamuni, S.; Nag, A. Postsynthesis Doping of Mn and Yb into CsPbX3 (X = Cl, Br, or I) Perovskite Nanocrystals for Downconversion Emission. Chem. Mater. 2018, 30, 8170–8178.
- 36 Wu, L.; Wang, Y.; Kurashvili, M.; Dey, A.; Cao, M.; Döblinger, M.; Zhang, Q.; Feldmann, J.; Huang, H.; Debnath, T. Interfacial Manganese-Doping in CsPbBr3 Nanoplatelets by Employing a Molecular Shuttle. Angew. Chem. Int. Ed. 2022, 61, e202115852.
- 37 Lu, C. H.; Biesold-McGee, G. V.; Liu, Y.; Kang, Z.; Lin, Z. Doping and Ion Substitution in Colloidal Metal Halide Perovskite Nanocrystals. Chem. Soc. Rev. 2020, 49, 4953–5007.
- 38 Litvin, A. P.; Margaryan, I. V.; Yin, W.; Zhang, X.; Zheng, W.; Rogach, A. L. B-Site Doping of Metal Halide Perovskite Nanoplatelets Influences Their Optical Properties. Adv. Optical Mater. 2024, 12, 2301001.
- 39 Tatarinov, D. A.; Sokolova, A. V.; Skurlov, I. D.; Danilov, D. V.; Koroleva, A. V.; Kuzmenko, N. K.; Timkina, Y. A.; Baranov, M. A.; Zhizhin, E. V.; Tcypkin, A. N.; Litvin, A. P. Anion-Assisted Yb3+ and Mn2+ Doping of 0D and 2D Lead Halide Perovskite Nanostructures. J. Mater. Chem. C 2023, 11, 5657–5666.
- 40 Huang, S.; Wang, B.; Zhang, Q.; Li, Z.; Shan, A.; Li, L. Postsynthesis Potassium-Modification Method to Improve Stability of CsPbBr3 Perovskite Nanocrystals. Adv. Opt. Mater. 2018, 6, 1701106.
- 41 Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696.
- 42 Yang, S.; Bi, C.; Tian, J. Highly Pure White Light-Emitting Single-Component Perovskite Colloidal Quantum Dots. J. Phys. Chem. C 2021, 125, 18810–18816.
- 43 Vonk, S. J. W.; Fridriksson, M. B.; Hinterding, S. O. M.; Mangnus, M. J. J.; van Swieten, T. P.; Grozema, F. C.; Rabouw, F. T.; van der Stam, W. Trapping and Detrapping in Colloidal Perovskite Nanoplatelets: Elucidation and Prevention of Nonradiative Processes through Chemical Treatment. J. Phys. Chem. C 2020, 124, 8047–8054.
- 44 Pinchetti, V.; Anand, A.; Akkerman, Q. A.; Sciacca, D.; Lorenzon, M.; Meinardi, F.; Fanciulli, M.; Manna, L.; Brovelli, S. Trap-Mediated Two-Step Sensitization of Manganese Dopants in Perovskite Nanocrystals. ACS Energy Lett. 2019, 4, 85–93.
- 45 Qiao, T.; Parobek, D.; Dong, Y.; Ha, E.; Son, D. H. Photoinduced Mn Doping in Cesium Lead Halide Perovskite Nanocrystals. Nanoscale 2019, 11, 5247–5253.
- 46 Tang, X.; Chen, W.; Liu, Z.; Du, J.; Yao, Z.; Huang, Y.; Chen, C.; Yang, Z.; Shi, T.; Hu, W.; Zang, Z.; Chen, Y.; Leng, Y. Ultrathin Core-Shell Structured SiO2 Coated Mn2+-Doped Perovskite Quantum Dots for Bright White Light-Emitting Diodes. Small 2019, 15, 1900484.