Gradual or Hysteretic Transition: Anion Effects on Cobalt(II) Spin Crossover Complexes
Yu-Chen Sun
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYing-Lian Li
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCheng-Cheng Zhang
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorFeng-Li Chen
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorDong Shao
Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, 438000 China
Search for more papers by this authorYue Zhao
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorHai-Yan Wei
Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Xin-Yi Wang
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]Search for more papers by this authorYu-Chen Sun
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYing-Lian Li
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCheng-Cheng Zhang
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorFeng-Li Chen
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorDong Shao
Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, 438000 China
Search for more papers by this authorYue Zhao
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorHai-Yan Wei
Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Xin-Yi Wang
State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
To better understand the impact of different anions on the structures and SCO properties of the CoII SCO complexes, six new complexes [Co(terpy-CH2OH)2]A2·sol (terpy-CH2OH = 4′-(hydroxymethyl)-2,2′;6′,2″-terpyridine, A = Br– (1, sol = 1.5H2O), I– (2), N3– (3, sol = 2H2O), H3BCN– (4), OTf– (5), and TsO– (6, sol = 4H2O·CH3CN), have been synthesized and characterized. All six compounds consist of mononuclear [Co(terpy-CH2OH)2]2+ cations and charge-balancing anions that differ in size, shape, and hydrogen bonding capacity. Complexes 1, 2, 3, and 6 displayed incomplete gradual SCO transitions, whereas 4 and 5 exhibited abrupt hysteretic spin transitions with loops of 12 and 16 K (250.0—262.0 K for 4, and 370.0—386.0 K for 5, respectively), closely resembling our previously reported complexes with SCN– and SeCN– anions. The occurrence of the order-disorder transition of the CH2OH groups and their transition temperatures are determined by the size and hydrogen bonding capability of the anions. Remarkably, the transition temperatures of complexes with H3BCN–, SCN–, OTf–, and SeCN– anions exhibit an upward trend as the size and mass of the anions increase, as confirmed through detailed single crystal structure analyses conducted in both high-spin and low-spin states for all four complexes.
Supporting Information
Filename | Description |
---|---|
CJOC202400488-sup-0001-supinfo.pdfPDF document, 1.7 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Cambi, L.; Szegö, L. Über die magnetische Susceptibilität der komplexen Verbindungen. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1931, 64, 2591–2598;
10.1002/cber.19310641002 Google Scholar(b) Topics in Current Chemistry, Vols. 233–235, Spin Crossover in Transition Metal Compounds I, II, and III, Eds.: P. Gütlich; H. A. Goodwin, Springer Verlag, Berlin, Germany, 2004; (c) Spin-Crossover Materials: Properties and Applications, Ed.: M. A. Halcrow, John Wiley & Sons Ltd., 2013.
- 2(a) Bousseksou, A.; Molnar, G.; Salmon, L.; Nicolazzi, W. Molecular Spin Crossover Phenomenon: Recent Achievements and Prospects. Chem. Soc. Rev. 2011, 40, 3313–3335; (b) Spin Crossover Phenomenon, Special issue in C. R. Chim, Vol. 21, Ed.: A. Bousseksou, Elsevier, Amsterdam, 2018, pp. 1055–1300.
- 3(a) Vallet-Regí, M.; Ruiz-González, L.; Izquierdo-Barba, I.; González- Calbet, J. M. Revisiting Silica Based Ordered Mesoporous Materials: Medical Applications. J. Mater. Chem. 2006, 16, 26–31; (b) Chastanet, G.; Lorenc, M.; Bertoni, R.; Desplanches, C. Light-Induced Spin Crossover-Solution and Solid-State Processes. C. R. Chim. 2018, 21, 1075–1094; (c) Ridier, K.; Nicolazzi, W.; Salmon, L.; Molnar, G.; Bousseksou, A. Sequential Activation of Molecular and Macroscopic Spin-State Switching within the Hysteretic Region Following Pulsed Light Excitation. Adv. Mater. 2022, 34, 2105468.
- 4(a) Gütlich, P.; Ksenofontov, V.; Gaspar, A. B. Pressure Effect Studies on Spin Crossover Systems. Coord. Chem. Rev. 2005, 249, 1811–1829; (b) Gütlich, P.; Gaspar, A. B.; Garcia, Y.; Ksenofontov, V. Pressure Effect Studies in Molecular Magnetism. C. R. Chim. 2007, 10, 21–36; (c) Gaspar, A. B.; Molnar, G.; Rotaru, A.; Shepherd, H. J. Pressure Effect Investigations on Spin-Crossover Coordination Compounds. C. R. Chim. 2018, 21, 1095–1120.
- 5(a) Meded, V.; Bagrets, A.; Fink, K.; Chandrasekar, R.; Ruben, M.; Evers, F.; Bernand-Mantel, A.; Seldenthuis, J. S.; Beukman, A.; van der Zant, H. S. J. Electrical Control Over the Fe(II) Spin Crossover in a Single Molecule: Theory and Experiment. Phys. Rev. B 2011, 83, 245415; (b) Zhang, X.; Palamarciuc, T.; Letard, J. F.; Rosa, P.; Lozada, E. V.; Torres, F.; Rosa, L. G.; Doudin, B.; Dowben, P. A. The Spin State of a Molecular Adsorbate Driven by the Ferroelectric Substrate Polarization. Chem. Commun. 2014, 50, 2255–2257; (c) Harzmann, G. D.; Frisenda, R.; van der Zant, H. S.; Mayor, M. Single-Molecule Spin Switch Based on Voltage-Triggered Distortion of the Coordination Sphere. Angew. Chem. Int. Ed. 2015, 54, 13425–13430; (d) Hao, G.; Mosey, A.; Jiang, X.; Yost, A. J.; Sapkota, K. R.; Wang, G. T.; Zhang, X.; Zhang, J.; N'Diaye, A. T.; Cheng, R.; Xu, X.; Dowben, P. A. Nonvolatile Voltage Controlled Molecular Spin State Switching. Appl. Phys. Lett. 2019, 114, 032901.
- 6(a) Linares, J.; Codjovi, E.; Garcia, Y. Pressure and Temperature Spin Crossover Sensors with Optical Detection. Sensors 2012, 12, 4479–4492; (b) Senthil Kumar, K.; Ruben, M. Emerging Trends in Spin Crossover (SCO) Based Functional Materials and Devices. Coord. Chem. Rev. 2017, 346, 176–205; (c) Molnar, G.; Rat, S.; Salmon, L.; Nicolazzi, W.; Bousseksou, A. Spin Crossover Nanomaterials: From Fundamental Concepts to Devices. Adv. Mater. 2018, 30, 17003862; (d) Li, H.; Peng, H. Recent Advances in Self-Assembly of Spin Crossover Materials and Their Applications. Curr. Opin. Colloid Interface Sci. 2018, 35, 9–16; (e) Kumar, K. S.; Ruben, M. Sublimable Spin-Crossover Complexes: From Spin-State Switching To Molecular Devices. Angew. Chem. Int. Ed. 2021, 60, 7502-7521; (f) Kipgen, L.; Bernien, M.; Tuczek, F.; Kuch, W. Spin-Crossover Molecules On Surfaces: From Isolated Molecules To Ultrathin Films. Adv. Mater. 2021, 33, 2008141.
- 7(a) Gutlich, P.; Gaspar, A. B.; Garcia, Y. Spin State Switching in Iron Coordination Compounds. Beilstein J Org. Chem. 2013, 9, 342–391; (b) Harding, D. J.; Harding, P.; Phonsri, W. Spin Crossover in Iron(III) Complexes. Coord. Chem. Rev. 2016, 313, 38–61; (c) Hogue, R. W.; Singh, S.; Brooker, S. Spin Crossover in Discrete Polynuclear Iron(II) Complexes. Chem. Soc. Rev. 2018, 47, 7303–7338.
- 8(a) Goodwin, H. A. Spin Crossover in Cobalt(II) Systems. In Spin Crossover in Transition Metal Compounds II, Vol. 234, Eds.: P. Gutlich; H. A. Goodwin, Springer Verlag, Berlin, 2004, pp. 23–47;
(b) Garcia, Y.; Gutlich, P. Thermal Spin Crossover in Mn(II), Mn(III), Cr(II) and Co(III) Coordination Compounds. In Spin Crossover in Transition Metal Compounds II, Vol. 234, Eds.: P. Gutlich; H. A. Goodwin, Springer Verlag, Berlin, 2004, pp. 49–62.
10.1007/b95412 Google Scholar
- 9 Krivokapic, I.; Zerara, M.; Daku, M. L.; Vargas, A.; Enachescu, C.; Ambrus, C.; Tregenna-Piggott, P.; Amstutz, N.; Krausz, E.; Hauser, A. Spin-Crossover in Cobalt(II) Imine Complexes. Coord. Chem. Rev. 2007, 251, 364–378.
- 10(a) Hayami, S.; Komatsu, Y.; Shimizu, T.; Kamihata, H.; Lee, Y. H. Spin-Crossover in Cobalt(II) Compounds Containing Terpyridine and Its Derivatives. Coord. Chem. Rev. 2011, 255, 1981–1990; (b) Hayami, S.; Karim, M. R.; Lee, Y. H. Magnetic Behavior and Liquid-Crystal Properties in Spin-Crossover Cobalt(II) Compounds with Long Alkyl Chains. Eur. J. Inorg. Chem. 2013, 2013, 683–696.
- 11 Miller, R. G.; Narayanaswamy, S.; Tallon, J. L.; Brooker, S. Spin Crossover with Thermal Hysteresis in Cobalt(II) Complexes and the Importance of Scan Rate. New J. Chem. 2014, 38, 1932–1941.
- 12 Olguín, J. Unusual Metal Centres/Coordination Spheres in Spin Crossover Compounds. Coord. Chem. Rev. 2020, 407, 213148–213177.
- 13 Judge, J. S.; Baker, W. A. On the Spin Equilibrium in Bis(2,2′,2″-terpyridine) Cobalt(II) Salts. Inorg. Chim. Acta 1967, 1, 68–72.
- 14(a) Gaspar, A. B.; Munoz, M. C.; Niel, V.; Real, J. A. CoII[4-(terpyridone)2]X2: A Novel Cobalt(II) Spin Crossover System [4-terpyridone = 2,6-bis(2-pyridyl)-4(1H)-pyridone]. Inorg. Chem. 2001, 40, 9–10; (b) Galet, A.; Gaspar, A. B.; Munoz, M. C.; Real, J. A. Influence of the Counterion and the Solvent Molecules in the Spin Crossover System [Co(4-terpyridone)2]Xp·nH2O. Inorg. Chem. 2006, 45, 4413–4422.
- 15 Nielsen, P.; Toftlund, H.; Bond, A. D.; Boas, J. F.; Pilbrow, J. R.; Hanson, G. R.; Noble, C.; Riley, M. J.; Neville, S. M.; Moubaraki, B.; et al. Systematic Study of Spin Crossover and Structure in [Co(terpyRX)2](Y)2 Systems (terpyRX = 4’-alkoxy-2,2’:6’,2’-terpyridine, X = 4, 8, 12, Y = BF4-, ClO4-, PF6-, BPh4-). Inorg. Chem. 2009, 48, 7033–7047.
- 16(a) Kremer, S.; Henke, W.; Reinen, D. High-Spin-Low-Spin Equilibriums of Cobalt2+ in the Terpyridine Complexes Co(terpy)2X2·nH2O. Inorg. Chem. 2002, 21, 3013–3022;
10.1021/ic00138a019 Google Scholar(b) Pfrunder, M. C.; Whittaker, J. J.; Parsons, S.; Moubaraki, B.; Murray, K. S.; Moggach, S. A.; Sharma, N.; Micallef, A. S.; Clegg, J. K.; McMurtrie, J. C. Controlling Spin Switching with Anionic Supramolecular Frameworks. Chem. Mater. 2020, 32, 3229–3234.
- 17(a) Takami, K.; Ohtani, R.; Nakamura, M.; Kurogi, T.; Sugimoto, M.; Lindoy, L. F.; Hayami, S. Redox Induced Colour Changes between Red-Violet and Blue in Hetero-Metal Complexes of the Type [Co(II)(4’-ferrocenyl-2,2’;6’2’-terpyridine)2]X2 (X = counter anion). Dalton Trans. 2015, 44, 18354–18359; (b) Raj, M. V. N.; Bhar, K.; Khan, T. A.; Jain, S.; Perdih, F.; Mitra, P.; Sharma, A. K. Temperature Induced Spin Crossover Behaviour in Mononuclear Cobalt(II) Bis Terpyridine Complexes. MRS Adv. 2019, 4, 1597–1610.
- 18 Ghosh, S.; Ghosh, S.; Kamilya, S.; Mandal, S.; Mehta, S.; Mondal, A. Impact of Counteranion on Reversible Spin-State Switching in a Series Of Cobalt(II) Complexes Containing a Redox-Active Ethylenedioxythiophene-Based Terpyridine Ligand. Inorg. Chem. 2022, 61, 17080–17088.
- 19(a) Hayami, S.; Shigeyoshi, Y.; Akita, M.; Inoue, K.; Kato, K.; Osaka, K.; Takata, M.; Kawajiri, R.; Mitani, T.; Maeda, Y. Reverse Spin Transition Triggered by a Structural Phase Transition. Angew. Chem. Int. Ed. 2005, 44, 4899–4903;
(b) Hayami, S.; Murata, K.; Urakami, D.; Kojima, Y.; Akita, M.; Inoue, K. Dynamic Structural Conversion in a Spin-Crossover Cobalt(II) Compound with Long Alkyl Chains. Chem. Commun. 2008, 2008, 6510–6512.
10.1039/b814415j Google Scholar
- 20 Cowan, M. G.; Olguin, J.; Narayanaswamy, S.; Tallon, J. L.; Brooker, S. Reversible Switching of a Cobalt Complex by Thermal, Pressure, and Electrochemical Stimuli: Abrupt, Complete, Hysteretic Spin Crossover. J. Am. Chem. Soc. 2012, 134, 2892–2894.
- 21(a) Lee, Y. H.; Won, M. S.; Harrowfield, J. M.; Kawata, S.; Hayami, S.; Kim, Y. Spin Crossover in Co(II) Metallorods--Replacing Aliphatic Tails by Aromatic. Dalton Trans. 2013, 42, 11507–11521; (b) Guo, Y.; Yang, X. L.; Wei, R. J.; Zheng, L. S.; Tao, J. Spin Transition and Structural Transformation in a Mononuclear Cobalt(II) Complex. Inorg. Chem. 2015, 54, 7670–7672; (c) Nakaya, M.; Ohtani, R.; Shin, J. W.; Nakamura, M.; Lindoy, L. F.; Hayami, S. Abrupt Spin Transition in a Modified-Terpyridine Cobalt(II) Complex with a Highly-Distorted [CoN6] Core. Dalton Trans. 2018, 47, 13809–13814.
- 22 Kanetomo, T.; Inokuma, K.; Naoi, Y.; Enomoto, M. Spin Transition Triggered by Desorption of Crystal Solvents for a Two-Dimensional Cobalt(II) Complex With Hydrogen Bonding. Dalton Trans. 2021, 50, 11243–11248.
- 23 Kobayashi, F.; Hiramatsu, T.; Sueyasu, K.; Tadokoro, M. Proton Conductive Mononuclear Hydrogen-Bonded Cobalt(II) Spin Crossover Complex. Cryst. Growth Des. 2023, 23, 1633–1640.
- 24(a) Hayami, S.; Moriyama, R.; Shigeyoshi, Y.; Kawajiri, R.; Mitani, T.; Akita, M.; Inoue, K.; Maeda, Y. Spin-Crossover Cobalt(II) Compound with Banana-Shaped Structure. Inorg. Chem. 2005, 44, 7295–7297; (b) Hayami, S.; Moriyama, R.; Shuto, A.; Maeda, Y.; Ohta, K.; Inoue, K. Spin Transition at the Mesophase Transition Temperature in a Cobalt(II) Compound with Branched Alkyl Chains. Inorg. Chem. 2007, 46, 7692–7694; (c) Hayami, S.; Kato, K.; Komatsu, Y.; Fuyuhiro, A.; Ohba, M. Unique Spin Transition and Wide Thermal Hysteresis Loop For a Cobalt(II) Compound with Long Alkyl Chain. Dalton Trans. 2011, 40, 2167–2169; (d) Hayami, S.; Nakaya, M.; Ohmagari, H.; Alao, A. S.; Nakamura, M.; Ohtani, R.; Yamaguchi, R.; Kuroda-Sowa, T.; Clegg, J. K. Spin-Crossover Behaviors in Solvated Cobalt(II) Compounds. Dalton Trans. 2015, 44, 9345–9348; (e) Ohtani, R.; Egawa, S.; Nakaya, M.; Ohmagari, H.; Nakamura, M.; Lindoy, L. F.; Hayami, S. Metal Dilution Effects on the Reverse Spin Transition in Mixed Crystals of Type [Co1-xZnx(C16-terpy)2](BF4)2 (x = 0.1–0.7). Inorg. Chem. 2016, 55, 3332–3337; (f) Nakaya, M.; Ohtani, R.; Sugimoto, K.; Nakamura, M.; Lindoy, L. F.; Hayami, S. Molecular Assemblies of Metal Complexes via Base-Pairing of Nucleic Acids in the Crystalline State. Chem. Eur. J. 2017, 23, 7232–7237; (g) Kobayashi, F.; Ohtani, R.; Nakamura, M.; Lindoy, L. F.; Hayami, S. Slow Magnetic Relaxation Triggered by a Structural Phase Transition in Long-Chain-Alkylated Cobalt(II) Single-Ion Magnets. Inorg. Chem. 2019, 58, 7409–7415; (h) Akiyoshi, R.; Ohtani, R.; Lindoy, L. F.; Hayami, S. Spin Crossover Phenomena in Long Chain Alkylated Complexes. Dalton Trans. 2021, 50, 5065–5079.
- 25(a) Shao, D.; Deng, L. D.; Shi, L.; Wu, D. Q.; Wei, X. Q.; Yang, S. R.; Wang, X. Y. Slow Magnetic Relaxation and Spin-Crossover Behavior in a Bicomponent Ion-Pair Cobalt(II) Complex. Eur. J. Inorg. Chem. 2017, 2017, 3862–3867; (b) Shao, D.; Shi, L.; Yin, L.; Wang, B. L.; Wang, Z. X.; Zhang, Y. Q.; Wang, X. Y. Reversible On-Off Switching of Both Spin Crossover and Single-Molecule Magnet Behaviours via a Crystal-To-Crystal Transformation. Chem. Sci. 2018, 9, 7986–7991; (c) Shao, D.; Shi, L.; Shen, F. X.; Wei, X. Q.; Sato, O.; Wang, X. Y. Reversible On-Off Switching of the Hysteretic Spin Crossover in a Cobalt(II) Complex via Crystal to Crystal Transformation. Inorg. Chem. 2019, 58, 11589–11598.
- 26 Sun, Y.-C.; Chen, F.-L.; Wang, K.-J.; Zhao, Y.; Wei, H.-Y.; Wang, X.-Y. Hysteretic Spin Crossover with High Transition Temperatures in Two Cobalt(II) Complexes. Inorg. Chem. 2023, 62, 14863–14872.
- 27 Zhao, S. Z.; Zhou, H. W.; Qin, C. Y.; Zhang, H. Z.; Li, Y. H.; Yamashita, M.; Wang, S. Anion Effects on Spin Crossover Systems: From Supramolecular Chemistry to Magnetism. Chem. Eur. J. 2023, 29, e202300554.
- 28(a) Zhang, X.; Wang, Z. X.; Xie, H.; Li, M. X.; Woods, T. J.; Dunbar, K. R. A Cobalt(II) Spin-Crossover Compound with Partially Charged TCNQ Radicals and an Anomalous Conducting Behavior. Chem. Sci. 2016, 7, 1569–1574; (b) Xie, H.; Vignesh, K. R.; Zhang, X.; Dunbar, K. R. From Spin-Crossover to Single Molecule Magnetism: Tuning Magnetic Properties of Co(II) Bis-Ferrocenylterpy Cations via Supramolecular Interactions with Organocyanide Radical Anions. J. Mater. Chem. C 2020, 8, 8135–8144.
- 29 Llunell, M.; Casanova, D.; Cirera, J.; Alemany, P.; Alvarez, S. SHAPE, Version 2.1, Universitat de Barcelona, 2013.
- 30 McMurtrie, J.; Dance, I. Crystal Packing in Metal Complexes of 4′-Phenylterpyridine and Related Ligands: Occurrence of the 2D and 1D Terpy Embrace Arrays. CrystEngComm 2009, 11, 1141–1149.
- 31 Alvarez, S. Coordinating Ability of Anions, Solvents, Amino Acids, and Gases towards Alkaline and Alkaline-Earth Elements, Transition Metals, and Lanthanides. Chem. Eur. J. 2020, 26, 4350–4377.
- 32 Nemec, I.; Herchel, R.; Boca, R.; Travnicek, Z.; Svoboda, I.; Fuess, H.; Linert, W. Tuning of Spin Crossover Behaviour in Iron(III) Complexes Involving Pentadentate Schiff Bases and Pseudohalides. Dalton Trans. 2011, 40, 10090–10099.
- 33 Hogue, R. W.; Miller, R. G.; White, N. G.; Feltham, H. L.; Jameson, G. N.; Brooker, S. Hysteretic Spin Crossover in Iron(II) Complexes of a New Pyridine-Triazole-Pyrazine Ligand is Tuned by Choice of NCE Co-ligand. Chem. Commun. 2014, 50, 1435–1437.
- 34 Chen, X. Y.; Huang, R. B.; Zheng, L. S.; Tao, J. Co-ligand and Solvent Effects on the Spin-Crossover Behaviors of PtS-Type Porous Coordination Polymers. Inorg. Chem. 2014, 53, 5246–5252.
- 35 Yu, X.; Chen, T. Y.; Ye, Y. S.; Bao, X. Spin Crossover in Mononuclear Fe(II) Complexes Based on a Tetradentate Ligand. J. Phys.: Condens. Matter 2020, 32, 174001.
- 36 Cuza, E.; Benmansour, S.; Cosquer, N.; Conan, F.; Gómez-García, C. J.; Triki, S. Solvent-Induced Hysteresis Loop in Anionic Spin Crossover (SCO) Isomorph Complexes. Magnetochemistry 2021, 7, 75.
- 37 You, M.; Nguyen, G. T.; Shao, D.; Wang, T.; Chang, X. Y.; Ungur, L.; Zhang, Y. Z. Manipulating the Spin Crossover Behaviour in a Series of Cyanide-Bridged FeIII2FeII2 Molecular Squares through NCE- Co-ligands. Dalton Trans. 2022, 51, 5596–5602.
- 38 Sundaresan, S.; Brooker, S. Solution Spin Crossover Versus Speciation Effects: A Cautionary Tale. Inorg. Chem. 2023, 62, 12192–12202.
- 39 Hayami, S.; Hiki, K.; Kawahara, T.; Maeda, Y.; Urakami, D.; Inoue, K.; Ohama, M.; Kawata, S.; Sato, O. Photo-Induced Spin Transition of Iron(III) Compounds with π-π Intermolecular Interactions. Chem. Eur. J. 2009, 15, 3497–3508.
- 40 Halcrow, M. A.; Capel Berdiell, I.; Pask, C. M.; Kulmaczewski, R. Relationship between the Molecular Structure and Switching Temperature in a Library of Spin-Crossover Molecular Materials. Inorg. Chem. 2019, 58, 9811–9821.