Homochirality in Ferroelectrochemistry
Hang Peng
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
‡ H. P. and J.-C. Q. contributed equally.
Search for more papers by this authorJun-Chao Qi
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
‡ H. P. and J.-C. Q. contributed equally.
Search for more papers by this authorYu-Si Liu
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorJia-Mei Zhang
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorCorresponding Author
Wei-Qiang Liao
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Ren-Gen Xiong
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
E-mail: [email protected]; [email protected]Search for more papers by this authorHang Peng
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
‡ H. P. and J.-C. Q. contributed equally.
Search for more papers by this authorJun-Chao Qi
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
‡ H. P. and J.-C. Q. contributed equally.
Search for more papers by this authorYu-Si Liu
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorJia-Mei Zhang
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorCorresponding Author
Wei-Qiang Liao
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Ren-Gen Xiong
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
E-mail: [email protected]; [email protected]Search for more papers by this authorAbstract
What is the most favorite and original chemistry developed in your research group?
We originally proposed the design principle for molecular ferroelectrics: ferroelectrochemistry, including quasi-spherical theory, the introduction of homochirality, and H/F substitution. Ferroelectrochemistry changed the blind search for molecular ferroelectrics into targeted chemical design, which will develop into a new discipline.
How do you get into this specific field? Could you please share some experiences with our readers?
I have been devoted to the field of molecular ferroelectrics for more than 20 years. In the early stage, I worked on non-centrosymmetric metal-organic complexes, which are potential molecular ferroelectrics. This laid a foundation for my further study of molecular ferroelectrics. Non-centrosymmetric crystal symmetry is only one of the necessary requirements for ferroelectrics, which must adopt one of the 10 polar crystallographic point groups and should also generally undergo symmetry-breaking phase transitions. Due to the lack of a feasible method, the discovery of molecular ferroelectrics has long depended on blindly searching. This process is like finding a needle in a haystack. After years of exploration in this field, I fully understood the Landau phase transition phenomenological theory, Curie symmetry, and Neumann principle from a chemical perspective, and proposed the design principle for molecular ferroelectrics: ferroelectrochemistry, transforming the discovery of molecular ferroelectrics from blind search to targeted chemical design. Never give up no matter how much difficulty you have met, because maybe there is an opportunity the next second.
What is the most important personality for scientific research?
Curiosity, divergent thinking, perseverance, team spirit, and gratitude.
How do you supervise your students?
Emphasis on independent problem-solving abilities. Encourage students to read professional books frequently while doing research.
What are your hobbies? What’s your favorite book(s)?
Jogging, reading, and swimming. My favorite book is The Journey to the West.
Comprehensive Summary
Molecular ferroelectrics have attracted tremendous attention in the past decades due to their excellent ferroelectric performance and superiorities of easy processability, mechanical flexibility, and good biocompatibility. However, the discovery of molecular ferroelectrics is a great challenge and has long relied on blind search. This situation changed recently, with the development of ferroelectrochemistry proposed by our group. As a major design approach in ferroelectrochemistry, introducing homochirality, which facilitates the crystallization of materials in polar crystallographic point groups, greatly improves the probability of being ferroelectrics. Various new molecular ferroelectrics with splendid properties have been precisely synthesized by using this efficient and universal strategy. In this review, we summarize the advances in the chemical design of molecular ferroelectrics through the strategy of introducing homochirality.
Key Scientists
References
- 1 Lines, M. E.; Glass, A. M. Principles and Applications Of Ferroelectrics And Related Materials, Clarendon Press, Oxford, UK, 1977, pp. 559−607.
- 2 Scott, J. F. Applications of modern ferroelectrics. Science 2007, 315, 954−959.
- 3 Horiuchi, S.; Tokura, Y. Organic ferroelectrics. Nat. Mater. 2008, 7, 357–366.
- 4 Zhang, W.; Xiong, R. G. Ferroelectric metal-organic frameworks. Chem. Rev. 2012, 112, 1163−1195.
- 5 Shi, P. P.; Tang, Y. Y.; Li, P. F.; Liao, W. Q.; Wang, Z. X.; Ye, Q.; Xiong, R. G. Symmetry breaking in molecular ferroelectrics. Chem. Soc. Rev. 2016, 45, 3811−3827.
- 6 Landau, L. The theory of phase transitions. Nature 1936, 138, 840–841.
- 7 Ginzburg, V. L. On the dielectric properties of ferroelectric (Segnette-electric) crystals and barium titanate. Zh. Eksp. Teor. Fiz. 1945, 15, 739–749.
- 8 Cochran, W. Crystal Stability and the Theory of Ferroelectricity. Phys. Rev. Lett. 1959, 3, 142–144.
- 9Anderson, P. W. On Ferroelectric Phase Transitions, Conf. Proc. Lebedev Physics Institute USSR Academy of Sciences Fizika Dielektrikov ed G Skanavi (Nova Science Publishers), 1960, pp. 290–297.
- 10 Liu, H. Y.; Zhang, H. Y.; Chen, X. G.; Xiong, R. G. Molecular Design Principles for Ferroelectrics: Ferroelectrochemistry. J. Am. Chem. Soc. 2020, 142, 15205−15218.
- 11 Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 1921, 17, 475.
- 12 Aizu, K. Possible species of “ferroelastic” crystals and of simultaneously ferroelectric and ferroelastic crystals. J. Phys. Soc. Jpn. 1969, 27, 387−396.
- 13 Li, P. F.; Liao, W. Q.; Tang, Y. Y.; Qiao, W.; Zhao, D.; Ai, Y.; Yao, Y. F.; Xiong, R. G. Organic enantiomeric high-Tc ferroelectrics. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 5878−5885.
- 14 Li, P. F.; Ai, Y.; Zeng, Y. L.; Liu, J. C.; Xu, Z. K.; Wang, Z. X. Highest-Tc single-component homochiral organic ferroelectrics. Chem. Sci. 2022, 13, 657−664.
- 15 Song, X. J.; Tang, S. Y.; Chen, X. G.; Ai, Y. Chemical design of homochiral heterocyclic organic ferroelectric crystals. Chem. Commun. 2022, 58, 10361−10364.
- 16 Zhang, H. Y.; Jiang, H. H.; Zhang, Y.; Zhang, N.; Xiong, R. G. Ferroelectric Lithography in Single-Component Organic Enantiomorphic Ferroelectrics. Angew. Chem. Int. Ed. 2022, 61, e202200135.
- 17 Zhang, N.; Sun, W.; Zhang, Y.; Jiang, H.-H.; Xiong, R.-G.; Dong, S.; Zhang, H.-Y. Organic radical ferroelectric crystals with martensitic phase transition. Nat. Commun. 2023, 14, 5854.
- 18 Zhang, Z. X.; Song, X. J.; Li, Y. R.; Chen, X. G.; Zhang, Y.; Lv, H. P.; Tang, Y. Y.; Xiong, R. G.; Zhang, H. Y. The First Chiro-Inositol Organosilicon Ferroelectric Crystal. Angew. Chem. Int. Ed. 2022, 61, e202210809.
- 19 Russew, M. M.; Hecht, S. Photoswitches: from molecules to materials. Adv. Mater. 2010, 22, 3348–3360.
- 20 Hadjoudis, E.; Mavridis, I. M. Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem. Soc. Rev. 2004, 33, 579–588.
- 21 Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 2014, 114, 12174–12277.
- 22 Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev. 2014, 43, 148−184.
- 23 Yokoyama, Y. Fulgides for Memories and Switches. Chem. Rev. 2000, 100, 1717–1740.
- 24 Wang, Z. X.; Chen, X. G.; Song, X. J.; Zeng, Y. L.; Li, P. F.; Tang, Y. Y.; Liao, W. Q.; Xiong, R. G. Domain memory effect in the organic ferroics. Nat. Commun. 2022, 13, 2379.
- 25 Liao, W. Q.; Zeng, Y. L.; Tang, Y. Y.; Peng, H.; Liu, J. C.; Xiong, R. G. Multichannel Control of Multiferroicity in Single-Component Homochiral Organic Crystals. J. Am. Chem. Soc. 2021, 143, 21685−21693.
- 26 Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B.; Liu, Z.; Zhang, G.; Qu, D.-H.; Tian, H.; Ratner, M. A.; Xu, H. Q.; Nitzan, A.; Guo, X. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443−1445.
- 27 de Jong, J. J. D.; Lucas, L. N.; Kellogg, R. M.; van Esch, J. H.; Feringa, B. L. Reversible Optical Transcription of Supramolecular Chirality into Molecular Chirality. Science 2004, 304, 278−281.
- 28 Tang, Y. Y.; Zeng, Y. L.; Xiong, R. G. Contactless Manipulation of Write–Read–Erase Data Storage in Diarylethene Ferroelectric Crystals. J. Am. Chem. Soc. 2022, 144, 8633−8640.
- 29 Srivastava, A. K.; Chigrinov, V. G.; Kwok, H. S. Ferroelectric liquid crystals: Excellent tool for modern displays and photonics. J. Soc. Inf. Disp. 2015, 23, 253−272.
- 30 Reddy, R. A.; Zhu, C.; Shao, R.; Korblova, E.; Gong, T.; Shen, Y.; Garcia, E.; Glaser, M. A.; Maclennan, J. E.; Walba, D. M.; Clark, N. A. Spontaneous ferroelectric order in a bent-core smectic liquid crystal of fluid orthorhombic layers. Science 2011, 332, 72–77.
- 31 Lagerwall, S. T.; Clark, N. A.; Dijon, J.; Clerc, J. F. Ferroelectric liquid crystals: The development of devices. Ferroelectrics 1989, 94, 3−62.
- 32 Song, X. J.; Chen, X. G.; Liu, J. C.; Liu, Q.; Zeng, Y. P.; Tang, Y. Y.; Li, P. F.; Xiong, R. G.; Liao, W. Q. Biferroelectricity of a homochiral organic molecule in both solid crystal and liquid crystal phases. Nat. Commun. 2022, 13, 6150.
- 33 Liu, J. C.; Peng, H.; Chen, X. G.; Lv, H. P.; Song, X. J.; Xiong, R. G.; Liao, W. Q. Fluorination Enables Dual Ferroelectricity in Both Solid- and Liquid-Crystal Phases. JACS Au 2023, 3, 1196−1204.
- 34 Liu, J. C.; Ai, Y.; Liu, Q.; Zeng, Y. P.; Chen, X. G.; Lv, H. P.; Xiong, R. G.; Liao, W. Q. Solid-Liquid Crystal Biphasic Ferroelectrics with Tunable Biferroelectricity. Adv. Mater. 2023, 35, 2302436.
- 35 Li, P. F.; Tang, Y. Y.; Wang, Z. X.; Ye, H. Y.; You, Y. M.; Xiong, R. G. Anomalously rotary polarization discovered in homochiral organic ferroelectrics. Nat. Commun. 2016, 7, 13635.
- 36 Gao, W.; Zhang, Z.; Li, P. F.; Tang, Y. Y.; Xiong, R. G.; Yuan, G.; Ren, S. Chiral Molecular Ferroelectrics with Polarized Optical Effect and Electroresistive Switching. ACS Nano 2017, 11, 11739−11745.
- 37 Song, X.; Hodes, G.; Zhao, K.; Liu, S. Metal-free organic halide perovskite: a new class for next optoelectronic generation devices. Adv. Energy Mater. 2021, 11, 2003331.
- 38 Cui, Q.; Liu, S. F.; Zhao, K. Structural and Functional Insights into Metal-Free Perovskites. J. Phys. Chem. Lett. 2022, 13, 5168–5178.
- 39 Ye, H. Y.; Tang, Y. Y.; Li, P. F.; Liao, W. Q.; Gao, J. X.; Hua, X. N.; Cai, H.; Shi, P. P.; You, Y. M.; Xiong, R. G. Metal-free three-dimensional perovskite ferroelectrics. Science 2018, 361, 151−155.
- 40 Fu, D. W.; Gao, J. X.; He, W. H.; Huang, X. Q.; Liu, Y. H.; Ai, Y. High-Tc Enantiomeric Ferroelectrics Based on Homochiral Dabco-derivatives (Dabco = 1,4-Diazabicyclo[2.2.2]octane). Angew. Chem. Int. Ed. 2020, 59, 17477−17481.
- 41 Ai, Y.; Wu, D. J.; Yang, M. J.; Wang, P.; He, W. H.; Liao, W. Q. Highest-Tc organic enantiomeric ferroelectrics obtained by F/H substitution. Chem. Commun. 2020, 56, 7033−7036.
- 42 Li, Y.; Du, Y.; Huang, C. R.; Peng, H.; Zeng, Y. L.; Liu, J. C.; Liao, W. Q. Homochiral anionic modification toward the chemical design of organic enantiomeric ferroelectrics. Chem. Commun. 2021, 57, 5171−5174.
- 43 Xu, L.; Mu, X.; Chen, X. G.; Zhang, H. Y.; Xiong, R. G. Organic Enantiomeric Ferroelectrics with High Piezoelectric Performance: Imidazolium L- and D-Camphorsulfonate. Chem. Mater. 2021, 33, 5769−5779.
- 44 Sun, Z.; Chen, T.; Luo, J.; Hong, M. Bis(imidazolium) L-Tartrate: A Hydrogen-Bonded Displacive-Type Molecular Ferroelectric Material. Angew. Chem. Int. Ed. 2012, 51, 3871−3876.
- 45 Zhang, N.; Zhang, Y.; Jiang, H. H.; Du, G. W.; Pan, Q.; Xiong, R. G.; Zhang, H. Y. Enantiomeric Hydrogen-bonded Chains Driving Ferroelectric and Nonlinear Optical Behavior. Chem. Mater. 2022, 34, 8077−8086.
- 46 Saparov, B.; Mitzi, D. B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558–4596.
- 47 Zhou, C.; Lin, H.; Lee, S.; Chaaban, M.; Ma, B. Organic-inorganic metal halide hybrids beyond perovskites. Mater. Res. Lett. 2018, 6, 552–569.
- 48 Long, G.; Sabatini, R.; Saidaminov, M. I.; Lakhwani, G.; Rasmita, A.; Liu, X.; Sargent, E. H.; Gao, W. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 2020, 5, 423−439.
- 49 Lu, H.; Vardeny, Z. V.; Beard, M. C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 2022, 6, 470−485.
- 50 Dang, Y.; Liu, X.; Cao, B.; Tao, X. Chiral halide perovskite crystals for optoelectronic applications. Matter 2021, 4, 794−820.
- 51 Zhang, Y.; Liao, W. Q.; Fu, D. W.; Ye, H. Y.; Chen, Z. N.; Xiong, R. G. Highly efficient red-light emission in an organic-inorganic hybrid ferroelectric:(pyrrolidinium)MnCl3. J. Am. Chem. Soc. 2015, 137, 4928−4931.
- 52 Ai, Y.; Chen, X. G.; Shi, P. P.; Tang, Y. Y.; Li, P. F.; Liao, W. Q.; Xiong, R. G. Fluorine Substitution Induced High Tc of Enantiomeric Perovskite Ferroelectrics: (R)- and (S)-3-(Fluoropyrrolidinium)MnCl3. J. Am. Chem. Soc. 2019, 141, 4474−4479.
- 53 Tang, Y. Y.; Ai, Y.; Liao, W. Q.; Li, P. F.; Wang, Z. X.; Xiong, R. G. H/F-Substitution-Induced Homochirality for Designing High-Tc Molecular Perovskite Ferroelectrics. Adv. Mater. 2019, 31, 1902163.
- 54 Gao, J. X.; Zhang, W. Y.; Wu, Z. G.; Zheng, Y. X.; Fu, D. W. Enantiomorphic Perovskite Ferroelectrics with Circularly Polarized Luminescence. J. Am. Chem. Soc. 2020, 142, 4756−4761.
- 55 Ye, H.; Hu, W.-H.; Xu, W. J.; Zeng, Y.; Chen, X. X.; Huang, R. K.; Zhang, W. X.; Chen, X. M. Two enantiomeric perovskite ferroelectrics with a high Tc raised by inserting intermolecular hydrogen bonds. APL Mater. 2021, 9, 031102.
- 56 Hu, Y.; Florio, F.; Chen, Z.; Phelan, W. A.; Siegler, M. A.; Zhou, Z.; Guo, Y.; Hawks, R.; Jiang, J.; Feng, J.; Zhang, L.; Wang, B.; Wang, Y.; Gall, D.; Palermo, E. F.; Lu, Z.; Sun, X.; Lu, T.-M.; Zhou, H.; Ren, Y.; Wertz, E.; Sundararaman, R.; Shi, J. A chiral switchable photovoltaic ferroelectric 1D perovskite. Sci. Adv. 2020, 6, eaay4213.
- 57 Deng, B. B.; Xu, C. C.; Cheng, T. T.; Yang, Y. T.; Hu, Y. T.; Wang, P.; He, W. H.; Yang, M. J.; Liao, W. Q. Homochiral Nickel Nitrite ABX3 (X = NO2-) Perovskite Ferroelectrics. J. Am. Chem. Soc. 2020, 142, 6946−6950.
- 58 Yang, C. K.; Chen, W. N.; Ding, Y. T.; Wang, J.; Rao, Y.; Liao, W. Q.; Tang, Y. Y.; Li, P. F.; Wang, Z. X.; Xiong, R. G. The First 2D Homochiral Lead Iodide Perovskite Ferroelectrics: [R- and S-1-(4-Chlorophenyl)ethylammonium]2PbI4. Adv. Mater. 2019, 31, 1808088.
- 59 Xu, X. L.; Xiao, L. B.; Zhao, J.; Pan, B. K.; Li, J.; Liao, W. Q.; Xiong, R. G.; Zou, G. F. Molecular Ferroelectrics-Driven High-Performance Perovskite Solar Cells. Angew. Chem. Int. Ed. 2020, 59, 19974−19982.
- 60 Xiao, L.; Xu, X.; Lu, Z.; Zhao, J.; Liu, R.; Ye, Y.; Tang, R.; Liao, W. Q.; Xiong, R. G.; Zou, G. In-situ organic-inorganic ferroelectric layer growth for efficient perovskite solar cells with high photovoltage. Nano Energy 2023, 107, 108114
- 61 Zeng, Y. L.; Huang, X. Q.; Huang, C. R.; Zhang, H.; Wang, F.; Wang, Z. X. Unprecedented 2D Homochiral Hybrid Lead-Iodide Perovskite Thermochromic Ferroelectrics with Ferroelastic Switching. Angew. Chem. Int. Ed. 2021, 60, 10730−10735.
- 62 Fan, C. C.; Han, X. B.; Liang, B. D.; Shi, C.; Miao, L. P.; Chai, C. Y.; Liu, C. D.; Ye, Q.; Zhang, W. Chiral Rashba Ferroelectrics for Circularly Polarized Light Detection. Adv. Mater. 2022, 34, 2204119.
- 63 Guo, T. M.; Gao, F. F.; Gong, Y. J.; Li, Z. G.; Wei, F.; Li, W.; Bu, X. H. Chiral Two-Dimensional Hybrid Organic-Inorganic Perovskites for Piezoelectric Ultrasound Detection. J. Am. Chem. Soc. 2023, 145, 22475−22482.
- 64 Shi, C.; Ye, L.; Gong, Z. X.; Ma, J. J.; Wang, Q. W.; Jiang, J. Y.; Hua, M. M.; Wang, C. F.; Yu, H.; Zhang, Y.; Ye, H. Y. Two-Dimensional Organic-Inorganic Hybrid Rare-Earth Double Perovskite Ferroelectrics. J. Am. Chem. Soc. 2020, 142, 545−551.
- 65 Mao, Y.; Chen, X. G.; Gu, Z. X.; Zhang, Z. X.; Song, X. J.; Gu, N.; Xiong, R. G. Homochiral Multiferroic Cyanido-Bridged Dimetallic Complexes Assembled by C—F···K Interactions. Angew. Chem. Int. Ed. 2022, 61, e202204135.
- 66 Shi, C.; Ma, J. J.; Jiang, J. Y.; Hua, M. M.; Xu, Q.; Yu, H.; Zhang, Y.; Ye, H. Y. Large Piezoelectric Response in Hybrid Rare-Earth Double Perovskite Relaxor Ferroelectrics. J. Am. Chem. Soc. 2020, 142, 9634−9641.
- 67 Hu, Z. B.; Wang, C. F.; Sha, T. T.; Shi, C.; Ye, L.; Ye, H. Y.; Song, Y.; You, Y. M.; Zhang, Y. An Effective Strategy of Introducing Chirality to Achieve Multifunctionality in Rare-Earth Double Perovskite Ferroelectrics. Small Methods 2022, 6, 2200421.
- 68 Wang, C. F.; Shi, C.; Zheng, A.; Wu, Y.; Ye, L.; Wang, N.; Ye, H. Y.; Ju, M. G.; Duan, P.; Wang, J.; Zhang, Y. Achieving circularly polarized luminescence and large piezoelectric response in hybrid rare-earth double perovskite by a chirality induction strategy. Mater. Horiz. 2022, 9, 2450−2459.
- 69 Zhang, W.; Ye, H.-Y.; Xiong, R.-G. Metal-organic coordination compounds for potential ferroelectrics. Coord. Chem. Rev. 2009, 253, 2980−2997.
- 70 Long, J.; Ivanov, M. S.; Khomchenko, V. A.; Mamontova, E.; Thibaud, J.-M.; Rouquette, J.; Beaudhuin, M.; Granier, D.; Ferreira, R. A. S.; Carlos, L. D.; Donnadieu, B.; Henriques, M. S. C.; Paixão, J. A.; Guari, Y.; Larionova, J. Room temperature magnetoelectric coupling in a molecular ferroelectric ytterbium(III) complex. Science 2020, 367, 671−676.
- 71 Zeng, Y. L.; Ai, Y.; Tang, S. Y.; Song, X. J.; Chen, X. G.; Tang, Y. Y.; Zhang, Z. X.; You, Y. M.; Xiong, R. G.; Zhang, H. Y. Axial-Chiral BINOL Multiferroic Crystals with Coexistence of Ferroelectricity and Ferroelasticity. J. Am. Chem. Soc. 2022, 144, 19559−19566.
- 72 Peng, H.; Xu, Z. K.; Du, Y.; Li, P. F.; Wang, Z. X.; Xiong, R. G.; Liao, W. Q. The First Enantiomeric Stereogenic Sulfur-Chiral Organic Ferroelectric Crystals. Angew. Chem. Int. Ed. 2023, 62, e202306732.
- 73 Deng, W. F.; Li, Y. X.; Zhao, Y. X.; Hu, J. S.; Yao, Z. S.; Tao, J. Inversion of Molecular Chirality Associated with Ferroelectric Switching in a High-Temperature Two-Dimensional Perovskite Ferroelectric. J. Am. Chem. Soc. 2023, 145, 5545−5552.
- 74 Chen, X.; Qin, H.; Qian, X.; Zhu, W.; Li, B.; Zhang, B.; Lu, W.; Li, R.; Zhang, S.; Zhu, L.; Dos Santos, F. D.; Bernholc, J.; Zhang, Q. M. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 2022, 375, 1418−1422.
- 75 Wang, Z. X.; Liao, W. Q. Giant electromechanical effects in polymers. Science 2022, 375, 1353−1354.
- 76 Zhang, H. Y.; Xiong, R. G. Ferroelectric polymers take a step toward bioelectronics. Science 2023, 381, 484−485.
- 77 Tu, S.; Guo, Y.; Zhang, Y.; Hu, C.; Zhang, T.; Ma, T.; Huang, H. Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Adv. Funct. Mater. 2020, 30, 2005158.
- 78 Kubota, K.; Pang, Y.; Miura, A.; Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 2019, 366, 1500−1504.