Recent Advances in Deciphering the Mechanisms and Biological Functions of DNA Demethylation
Yang Feng
Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300 China
School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071 China
Search for more papers by this authorSheng-Jun Chen
Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300 China
Search for more papers by this authorCorresponding Author
Bi-Feng Yuan
School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071 China
E-mail: [email protected]Search for more papers by this authorYang Feng
Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300 China
School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071 China
Search for more papers by this authorSheng-Jun Chen
Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300 China
Search for more papers by this authorCorresponding Author
Bi-Feng Yuan
School of Public Health, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071 China
E-mail: [email protected]Search for more papers by this author†Dedicated to the Special Issue of Single-Atom Catalysis.
Comprehensive Summary
5-Methylcytosine (5mC) is a dynamic and reversible epigenetic modification in genomic DNA of higher eukaryotes. It has been well-established that the demethylation of 5mC occurs through the ten-eleven translocation (TET)-mediated oxidation of 5mC followed by thymine DNA glycosylase (TDG)-initiated base excision repair (BER). Recent findings also have identified an alternative pathway of DNA demethylation. In this pathway, TET enzymes directly oxidize 5mC to form 5-formylcytosine (5fC) or 5-carboxylcytosine (5caC). These modified bases can undergo direct deformylation or decarboxylation, respectively. Additionally, DNA demethylation can also occur through the deamination of 5mC and 5hmC, resulting in the production of thymine and 5-hydroxymethyluracil (5hmU), respectively. Various DNA demethylation pathways possess critical functional implications and roles in biological processes. This Recent Advances article will focus on the studies of mechanisms and biological functions of DNA demethylation, shedding light on the reversible nature of the epigenetic modification of 5mC.
References
- 1 Luo, C.; Hajkova, P.; Ecker, J. R. Dynamic DNA methylation: In the right place at the right time. Science 2018, 361, 1336–1340.
- 2 Zhao, L.-Y.; Song, J.; Liu, Y.; Song, C.-X.; Yi, C. Mapping the epigenetic modifications of DNA and RNA. Protein Cell 2020, 11, 792–808.
- 3 Lai, W.; Mo, J.; Yin, J.; Lyu, C.; Wang, H. Profiling of epigenetic DNA modifications by advanced liquid chromatography-mass spectrometry technologies. TrAC Trend Anal.Chem. 2019, 110, 173–182.
- 4 Zhang, Y.; Hu, J.; Zou, X.; Ma, F.; Qiu, J.-G.; Zhang, C.-y. Integration of single-molecule detection with endonuclease IV-assisted signal amplification for sensitive DNA methylation assay. Chem. Commun. 2021, 57, 2073–2076.
- 5 Ma, C.-J.; Li, G.; Shao, W.-X.; Min, Y.-H.; Wang, P.; Ding, J.-H.; Xie, N.-B.; Wang, M.; Tang, F.; Feng, Y.-Q.; Ci, W.; Wang, Y.; Yuan, B.-F. Single-nucleotide resolution mapping of N(6)-Methyladenine in genomic DNA. ACS Cent. Sci. 2023, 9, 1799–1809.
- 6 Yousefi, P. D.; Suderman, M.; Langdon, R.; Whitehurst, O.; Davey, S. G.; Relton, C. L. DNA methylation-based predictors of health: applications and statistical considerations. Nat. Rev. Genet. 2022, 23, 369–383.
- 7 Nickel, G. A.; Diehl, K. L. Chemical biology approaches to identify and profile interactors of chromatin modifications. ACS Chem. Biol. 2023, 18, 1014–1026.
- 8
Feng, T.; Gao, Y.-L.; Hu, D.; Yuan, K.-Y.; Gu, S.-Y.; Gu, Y.-H.; Yu, S.-Y.; Xiong, J.; Feng, Y.-Q.; Wang, J.; Yuan, B.-F. Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chin. Chem. Lett. 2023, 34, 109259.
10.1016/j.cclet.2023.109259 Google Scholar
- 9 Chen, M.-Y.; Gui, Z.; Chen, K.-K.; Ding, J.-H.; He, J.-G.; Xiong, J.; Li, J.-L.; Wang, J.; Yuan, B.-F.; Feng, Y.-Q. Adolescent alcohol exposure alters DNA and RNA modifications in peripheral blood by liquid chromatography-tandem mass spectrometry analysis. Chin. Chem. Lett. 2022, 33, 2086–2090.
- 10 Chen, Z.; Zhang, Y. Role of mammalian DNA methyltransferases in development. Annu. Rev. Biochem. 2020, 89, 135–158.
- 11 Liu, T.; Ma, C.-J.; Yuan, B.-F.; Feng, Y.-Q. Modificaomics: deciphering the functions of biomolecule modifications. Sci. China Chem. 2018, 61, 381–392.
- 12 Bai, L.; Yang, G.; Qin, Z.; Lyu, J.; Wang, Y.; Feng, J.; Liu, M.; Gong, T.; Li, X.; Li, Z.; Li, J.; Qin, J.; Yang, W.; Ding, C. Proteome-wide profiling of readers for DNA modification. Adv. Sci. 2021, 8, e2101426.
- 13 Greenberg, M. V. C.; Bourc'his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607.
- 14 Xiong, J.; Liu, X.; Cheng, Q.-Y.; Xiao, S.; Xia, L.-X.; Yuan, B.-F.; Feng, Y.-Q. Heavy metals induce decline of derivatives of 5-methycytosine in both DNA and RNA of stem cells. ACS Chem. Biol. 2017, 12, 1636–1643.
- 15 Wang, D.; Wu, W.; Callen, E.; Pavani, R.; Zolnerowich, N.; Kodali, S.; Zong, D.; Wong, N.; Noriega, S.; Natha, W. J.; Matos-Rodrigues, G.; Chari, R.; Kruhlak, M. J.; Livak, F.; Ward, M.; Caldecott, K.; Di Stefana, B.; Nussenzweig, A. Active DNA demethylation promotes cell fate specification and the DNA damage response. Science 2022, 378, 983–989.
- 16 Parry, A.; Rulands, S.; Reik, W. Active turnover of DNA methylation during cell fate decisions. Nat. Rev. Genet. 2021, 22, 59–66.
- 17 Wu, X.; Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 2017, 18, 517–534.
- 18 Atlasi, Y.; Stunnenberg, H. G. The interplay of epigenetic marks during stem cell differentiation and development. Nat. Rev. Genet. 2017, 18, 643–658.
- 19 Dai, Y.; Yuan, B.-F.; Feng, Y.-Q. Quantification and mapping of DNA modifications. RSC Chem. Biol. 2021, 2, 1096–1114.
- 20 Tahiliani, M.; Koh, K. P.; Shen, Y.; Pastor, W. A.; Bandukwala, H.; Brudno, Y.; Agarwal, S.; Lyer, L. M.; Liu, D. R.; Aravind, L.; Rao, A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324, 930–935.
- 21 Kriaucionis, S.; Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324, 929–930.
- 22 He, Y.-F.; Li, B.-Z.; Li, Z.; Liu, P.; Wang, Y.; Tang, Q.; Ding, J.; Jia, Y.; Chen, Z.; Li, L.; Sun, Y.; Li, X.; Dai, Q.; Song, C.-X.; Zhang, K.; He, C.; Xu, G.-L. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333, 1303–1307.
- 23 Ito, S.; Shen, L.; Dai, Q.; Wu, S. C.; Collins, L. B.; Swenberg, J. A.; He, C.; Zhang, Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333, 1300–1303.
- 24 Wang, Q.; Yin, H.-S.; Zhou, Y.-L.; Cao, L.-L.; Yu, Z.-K.; Xu, Y.-M.; Ai, S.-Y. Photoelectrochemical biosensor for 5-formylcytosine based on WS2/Bi/Bi2O2CO3 nanocomposite and rolling circle amplification. Chin. J. Chem. 2022, 40, 247–255.
- 25 Wang, Q.; Ding, J.-H.; Xiong, J.; Feng, Y.; Yuan, B.-F.; Feng, Y.-Q. Site-specific quantification of 5-carboxylcytosine in DNA by chemical conversion coupled with ligation-based PCR. Chin. Chem. Lett. 2021, 32, 3426–3430.
- 26 Rausch, C.; Hastert, F. D.; Cardoso, M. C. DNA modification readers and writers and their interplay. J. Mol. Biol. 2019, 432, 1731–1746.
- 27 Korytiakova, E.; Kaminska, E.; Muller, M.; Carell, T. Deformylation of 5-formylcytidine in different cell types. Angew. Chem. Int. Ed. 2021, 60, 16869–16873.
- 28 Feng, Y.; Chen, J.-J.; Xie, N.-B.; Ding, J.-H.; You, X.-J.; Tao, W.-B.; Zhang, X.; Yi, C.; Zhou, X.; Yuan, B.-F.; Feng, Y.-Q. Direct decarboxylation of ten-eleven translocation-produced 5-carboxylcytosine in mammalian genomes forms a new mechanism for active DNA demethylation. Chem. Sci. 2021, 12, 11322–11329.
- 29 Drohat, A. C.; Coey, C. T. Role of base excision "repair" enzymes in erasing epigenetic marks from DNA. Chem. Rev. 2016, 116, 12711–12729.
- 30 Traube, F. R., Carell, T. The chemistries and consequences of DNA and RNA methylation and demethylation. RNA Biol. 2017, 14, 1099–1107.
- 31 Ito, S.; D'Alessio, A. C.; Taranova, O. V.; Hong, K.; Sowers, L. C.; Zhang, Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466, 1129–1133.
- 32 Munzel, M.; Globisch, D.; Carell, T. 5-Hydroxymethylcytosine, the sixth base of the genome. Angew. Chem. Int. Ed. 2011, 50, 6460–6468.
- 33 Pfaffeneder, T.; Hackner, B.; Truss, M.; Munzel, M.; Muller, M.; Deiml, C. A.; Hagemeier, C.; Carell, T. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. Int. Ed. 2011, 50, 7008–7012.
- 34 Wang, Z.-Y.; Cao, Z.-Q.; Ma, K.-K.; Lu, M.; Wang, M.-J.; Gao, H.; Gong, D.-S.; Liang, L.; Yu, Z.-B. Reading time and DNA sequence preference of TET3 CXXC domain revealed by single-molecule profiling. Chin. J. Chem. 2023, 41, 1177–1184.
- 35 Dalton, S. R.; Bellacosa, A. DNA demethylation by TDG. Epigenomics 2012, 4, 459–467.
- 36 Zhang, L.; Lu, X.; Lu, J.; Liang, H.; Dai, Q.; Xu, G.-L.; Luo, C.; Jiang, H.; He, C. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat. Chem. Biol. 2012, 8, 328–330.
- 37 Weber, A. R.; Krawczyk, C.; Robertson, A. B.; Kuśnierczyk, A.; Vågbø, C. B.; Schuermann, D.; Klungland, A.; Schär, P. Biochemical reconstitution of TET1–TDG–BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat. Commun. 2016, 7, 10806.
- 38 Vasanthakumar, A.; Godley, L. A. 5-Hydroxymethylcytosine in cancer: significance in diagnosis and therapy. Cancer Genet. 2015, 208, 167–177.
- 39 Spada, F.; Schiffers, S.; Kirchner, A.; Zhang, Y.; Arista, G.; Kosmatchev, O.; Korytiakova, E.; Rahimoff, R.; Ebert, C.; Carell, T. Active turnover of genomic methylcytosine in pluripotent cells. Nat. Chem. Biol. 2020, 16, 1411–1419.
- 40 Hu, X.; Zhang, L.; Mao, S.-Q.; Li, Z.; Chen, J.; Zhang, R.-R.; Wu, H.-P.; Gao, J.; Guo, F.; Liu, W.; Xu, G.-F.; Dai, H.-Q.; Shi, Y.-G.; Li, X.; Hu, B.; Tang, F.; Pei, D.; Xu, G.-L. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell 2014, 14, 512–522.
- 41 Cortázar, D.; Kunz, C.; Selfridge, J.; Lettieri, T.; Saito, Y.; MacDougall, E.; Wirz, A.; Schuermann, D.; Jacobs, A. L.; Siegrist, F.; Steinacher, R.; Jiricny, J.; Bird, A.; Schär, P. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 2011, 470, 419–423.
- 42 Guo, F.; Li, X.; Liang, D.; Li, T.; Zhu, P.; Guo, H.; Wu, X.; Wen, L.; Gu, T.-P.; Hu, B.; Walsh, C. P.; Li, J.; Tang, F.; Xu, G.-L. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell 2014, 15, 447–459.
- 43 Schiesser, S.; Pfaffeneder, T.; Sadeghian, K.; Hackner, B.; Steigenberger, B.; Schroder, A. S.; Steinbacher, J.; Kashiwazaki, G.; Hofner, G.; Wanner, K. T.; Ochsenfeld, C.; Carell, T. Deamination, oxidation, and C-C bond cleavage reactivity of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. J. Am. Chem. Soc. 2013, 135, 14593–14599.
- 44 Chen, B.; Yuan, B.-F.; Feng, Y.-Q. Analytical methods for deciphering RNA modifications. Anal. Chem. 2019, 91, 743–756.
- 45 Tao, W.-B.; Xie, N.-B.; Cheng, Q.-Y.; Feng, Y.-Q.; Yuan, B.-F. Sensitive determination of inosine RNA modification in single cell by chemical derivatization coupled with mass spectrometry analysis. Chin. Chem. Lett. 2023, 34, 108243.
- 46 Tang, X.-M.; Ye, T.-T.; You, X.-J.; Yin, X.-M.; Ding, J.-H.; Shao, W.-X.; Chen, M.-Y.; Yuan, B.-F.; Feng, Y.-Q. Mass spectrometry profiling analysis enables the identification of new modifications in ribosomal RNA. Chin. Chem. Lett. 2023, 34, 107531.
- 47 Chen, Y.-Y.; Gui, Z.; Hu, D.; Chen, M.-Y.; He, J.-G.; Yu, S.-Y.; Feng, Y.-Q.; Wang, J.; Yuan, B.-F. Adolescent alcohol exposure changes RNA modifications in adult brain by mass spectrometry-based comprehensive profiling analysis. Chin. Chem. Lett. 2023, 34, 108522.
- 48 Chen, M.-Y.; Qi, C.-B.; Tang, X.-M.; Ding, J.-H.; Yuan, B.-F.; Feng, Y.-Q. Comprehensive profiling and evaluation of the alteration of RNA modifications in thyroid carcinoma by liquid chromatography- tandem mass spectrometry. Chin. Chem. Lett. 2022, 33, 3772–3776.
- 49 You, X.-J.; Li, L.; Ji, T.-T.; Xie, N.-B.; Yuan, B.-F.; Feng, Y.-Q. 6-Thioguanine incorporates into RNA and induces adenosine-to-inosine editing in acute lymphoblastic leukemia cells. Chin. Chem. Lett. 2023, 34, 107181.
- 50 Iwan, K.; Rahimoff, R.; Kirchner, A.; Spada, F.; Schroder, A. S.; Kosmatchev, O.; Ferizaj, S.; Steinbacher, J.; Parsa, E.; Muller, M.; Carell, T. 5-Formylcytosine to cytosine conversion by C-C bond cleavage in vivo. Nat. Chem. Biol. 2018, 14, 72–78.
- 51 Schon, A.; Kaminska, E.; Schelter, F.; Ponkkonen, E.; Korytiakova, E.; Schiffers, S.; Carell, T. Analysis of an active deformylation mechanism of 5-formyl-deoxycytidine (fdC) in stem cells. Angew. Chem. Int. Ed. 2020, 59, 5591–5594.
- 52 Feng, Y.; Xie, N.-B.; Tao, W.-B.; Ding, J.-H.; You, X.-J., Ma, C.-J.; Yi, C.; Zhou, X.; Yuan, B.-F.; Feng, Y.-Q. Transformation of 5-carboxylcytosine to cytosine through C–C bond cleavage in human cells constitutes a novel pathway for DNA demethylation. CCS Chem. 2021, 3, 994–1008.
- 53 Kaminska, E.; Korytiakova, E.; Reichl, A.; Muller, M.; Carell, T. Intragenomic decarboxylation of 5-carboxy-2'-deoxycytidine. Angew. Chem. Int. Ed. 2021, 60, 23207–23211.
- 54 Liutkeviciute, Z.; Kriukiene, E.; Licyte, J.; Rudyte, M.; Urbanaviciute, G.; Klimasauskas, S. Direct decarboxylation of 5-carboxylcytosine by DNA C5-methyltransferases. J. Am. Chem. Soc. 2014, 136, 5884–5887.
- 55 Schiesser, S.; Hackner, B.; Pfaffeneder, T.; Muller, M.; Hagemeier, C.; Truss, M.; Carell, T. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew. Chem. Int. Ed. 2012, 51, 6516–6520.
- 56 Xu, S.; Li, W.; Zhu, J.; Wang, R.; Li, Z.; Xu, G.-L.; Ding, J. Crystal structures of isoorotate decarboxylases reveal a novel catalytic mechanism of 5-carboxyl-uracil decarboxylation and shed light on the search for DNA decarboxylase. Cell Res. 2013, 23, 1296–1309.
- 57 Schutsky, E. K.; Nabel, C. S.; Davis, A. K. F.; DeNizio, J. E.; Kohli, R. M. APOBEC3A efficiently deaminates methylated, but not TET-oxidized, cytosine bases in DNA. Nucleic Acids Res. 2017, 45, 7655–7665.
- 58 Santos, F.; Peat, J.; Burgess, H.; Rada, C.; Reik, W.; Dean, W. Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenetics Chromatin 2013, 6, 39.
- 59 Bochtler, M.; Kolano, A.; Xu, G.-L. DNA demethylation pathways: Additional players and regulators. Bioessays 2017, 39, 1–13.
- 60 Wang, M.; Xie, N.-B.; Chen, K.-K.; Ji, T.-T.; Xiong, J.; Guo, X.; Yu, S.-Y.; Tang, F.; Xie, C.; Feng, Y.-Q.; Yuan, B.-F. Engineered APOBEC3C sequencing enables bisulfite-free and direct detection of DNA methylation at a single-base resolution. Anal. Chem. 2023, 95, 1556–1565.
- 61 Xiong, J.; Wang, P.; Shao, W.-X.; Li, G.-J.; Ding, J.-H.; Xie, N.-B.; Wang, M.; Cheng, Q.-Y.; Xie, C.-H.; Feng, Y.-Q.; Ci, W.-M.; Yuan, B.-F. Genome-wide mapping of N-4-methylcytosine at single-base resolution by APOBEC3A-mediated deamination sequencing. Chem. Sci. 2022, 13, 9960–9972.
- 62 Xiong, J.; Chen, K.-K.; Xie, N.-B.; Ji, T.-T.; Yu, S.-Y.; Tang, F.; Xie, C.; Feng, Y.-Q.; Yuan, B.-F. Bisulfite-free and single-base resolution detection of epigenetic DNA modification of 5-methylcytosine by methyltransferase-directed labeling with APOBEC3A deamination sequencing. Anal. Chem. 2022, 94, 15489–15498.
- 63 Xie, N.-B.; Wang, M.; Ji, T.-T.; Guo, X.; Ding, J.-H.; Yuan, B.-F.; Feng, Y.-Q. Bisulfite-free and single-nucleotide resolution sequencing of DNA epigenetic modification of 5-hydroxymethylcytosine using engineered deaminase. Chem. Sci. 2022, 13, 7046–7056.
- 64 Li, Q.-Y.; Xie, N.-B.; Xiong, J.; Yuan, B.-F.; Feng, Y.-Q. Single-nucleotide resolution analysis of 5-hydroxymethylcytosine in DNA by enzyme- mediated deamination in combination with sequencing. Anal. Chem. 2018, 90, 14622–14628.
- 65 Pecori, R.; Di Giorgio, S.; Paulo Lorenzo, J.; Nina Papavasiliou, F. Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nat. Rev. Genet. 2022, 23, 505–518.
- 66 Metivier, R.; Gallais, R.; Tiffoche, C.; Le Peron, C.; Jurkowska, R. Z.; Carmouche, R. P.; Ibberson, D.; Barath, P.; Demay, F.; Reid, G.; Benes, V.; Jeltsch, A.; Gannon, F.; Salbert, G. Cyclical DNA methylation of a transcriptionally active promoter. Nature 2008, 452, 45–50.
- 67 Grin, I.; Ishchenko, A. A. An interplay of the base excision repair and mismatch repair pathways in active DNA demethylation. Nucleic Acids Res. 2016, 44, 3713–3727.
- 68 Di Noia, J. M.; Franchini, D-M.; Chan, C-F.; Morgan, H.; Incorvaia, E.; Rangam, G.; Dean, W.; Santos, F.; Reik, W.; Petersen-Mahrt, S. K. Processive DNA demethylation via DNA deaminase-induced lesion resolution. PLoS One 2014, 9, e97754.
- 69 Amouroux, R.; Nashun, B.; Shirane, K.; Nakagawa, S.; Hill, P. W.; D'Souza, Z.; Nakayama, M.; Matsuda, M.; Turp, A.; Ndjetehe, E.; Encheva, V.; Kudo, N. R.; Koseki, H.; Sasaki, H.; Hajkova, P. De novo DNA methylation drives 5hmC accumulation in mouse zygotes. Nat. Cell Biol. 2016, 18, 225–233.
- 70 Thienpont, B.; Steinbacher, J.; Zhao, H.; D'Anna, F.; Kuchnio, A.; Ploumakis, A.; Ghesquiere, B.; Van Dyck, L.; Boeckx, B.; Schoonjans, L.; Hermans, E.; Amant, F.; Kristensen, V. N.; Peng Koh, K.; Mazzone, M.; Coleman, M.; Carell, T.; Carmeliet, P.; Lambrechts, D. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 2016, 537, 63–68.
- 71 Guo, J.-U.; Su, Y.; Zhong, C.; Ming, G.-L.; Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011, 145, 423–434.
- 72 Cortellino, S.; Xu, J.; Sannai, M.; Moore, R.; Caretti, E.; Cigliano, A.; Le Coz, M.; Devarajan, K.; Wessels, A.; Soprano, D.; Abramowitz, L. K.; Bartolomei, M. S.; Rambow, F.; Bassi, M. R.; Bruno, T.; Fanciulli, M.; Renner, C.; Klein-Szanto, A. J.; Matsumoto, Y.; Kobi, D.; Davidson, I.; Alberti, C.; Larue, L.; Bellacosa, A. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011, 146, 67–79.
- 73 Pfaffeneder, T.; Spada, F.; Wagner, M.; Brandmayr, C.; Laube, S. K.; Eisen, D.; Truss, M.; Steinbacher, J.; Hackner, B.; Kotljarova, O.; Schuermann, D.; Michalakis, S.; Kosmatchev, O.; Schiesser, S.; Steigenberger, B.; Raddaoui, N.; Kashiwazaki, G.; Muller, U.; Spruijt, C. G.; Vermeulen, M.; Leonhardt, H.; Schar, P.; Muller, M.; Carell, T. Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 2014, 10, 574–581.
- 74 Rangam, G.; Schmitz, K. M.; Cobb, A. J. Petersen-Mahr, S. K. AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud. PLoS One 2012, 7, e43279.
- 75 Iurlaro, M.; Ficz, G.; Oxley, D.; Raiber, E. A.; Bachman, M.; Booth, M. J.; Andrews, S.; Balasubramanian, S.; Reik, W. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 2013, 14, R119.
- 76 Spruijt, C. G.; Gnerlich, F.; Smits, A. H.; Pfaffeneder, T.; Jansen, P. W.; Bauer, C.; Munzel, M.; Wagner, M.; Muller, M.; Khan, F.; Eberl, H. C.; Mensinga, A.; Brinkman, A. B.; Lephikov, K.; Muller, U.; Walter, J.; Boelens, R.; van Ingen, H.; Leonhardt, H.; Carell, T.; Vermeulen, M. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013, 152, 1146–1159.