Synthetic Control of Thorium Metal-Organic Frameworks for Sequencing and Sensing of Radioiodine Species
Yu Ju
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.21, Gehu Middle Road, Changzhou, Jiangsu, 213164 China
These authors contribute equally to this work.
Search for more papers by this authorZi-Jian Li
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800 China
These authors contribute equally to this work.
Search for more papers by this authorXue Wang
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.21, Gehu Middle Road, Changzhou, Jiangsu, 213164 China
These authors contribute equally to this work.
Search for more papers by this authorJie Qiu
School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049 China
Search for more papers by this authorYiuhon Chan
School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049 China
Search for more papers by this authorCorresponding Author
Zhi-Hui Zhang
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.21, Gehu Middle Road, Changzhou, Jiangsu, 213164 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Mingyang He
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.21, Gehu Middle Road, Changzhou, Jiangsu, 213164 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Jian Lin
School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorYu Ju
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.21, Gehu Middle Road, Changzhou, Jiangsu, 213164 China
These authors contribute equally to this work.
Search for more papers by this authorZi-Jian Li
Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai, 201800 China
These authors contribute equally to this work.
Search for more papers by this authorXue Wang
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.21, Gehu Middle Road, Changzhou, Jiangsu, 213164 China
These authors contribute equally to this work.
Search for more papers by this authorJie Qiu
School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049 China
Search for more papers by this authorYiuhon Chan
School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049 China
Search for more papers by this authorCorresponding Author
Zhi-Hui Zhang
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.21, Gehu Middle Road, Changzhou, Jiangsu, 213164 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Mingyang He
Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, No.21, Gehu Middle Road, Changzhou, Jiangsu, 213164 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorCorresponding Author
Jian Lin
School of Nuclear Science and Technology, Xi'an Jiaotong University, No.28, West Xianning Road, Xi'an, Shaanxi, 710049 China
E-mail: [email protected], [email protected], [email protected]Search for more papers by this authorComprehensive Summary
Exploring the physiochemical properties and expanding the applications of actinide-containing materials is paramount to address the escalating challenge of radioactive waste accumulation. However, unlocking the full potential of these materials is largely crippled by the radiotoxicity of the actinides. We report here two porous and luminescent thorium-based metal-organic frameworks (Th-BITD-1 and Th-BITD-2) that serve as a bifunctional platform for sequencing and sensing of radioiodine, a much more radioactive fission product discharged during the nuclear fuel reprocessing. In particular, Th-BITD-1 displays better iodine uptake performance than Th-BITD-2 via the solution-based process and vapor diffusion with the maximum adsorption capacities of 831 and 1099 mg/g, respectively. Furthermore, Th-BITD-1 can function as a highly sensitive luminescence sensor for iodate with a quenching constant (KSV) of 6.6(5) × 103 M−1 and a detection limit of 2.02 μM, respectively, outperforming 2.96(6) × 103 M−1 and 10.5 μM of Th-BITD-2. Moreover, a positive correlation between the sensing efficacy and the iodate adsorption capacity has been revealed. This work highlights the opportunity in designing novel actinide-based MOFs for their potential applications in radiological fields, e.g., radionuclide separation and detection.
Supporting Information
Filename | Description |
---|---|
cjoc202300435-sup-0001-supinfo.pdfPDF document, 2.7 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Hanna, S. L.; Chheda, S.; Anderson, R.; Ray, D.; Malliakas, C. D.; Knapp, J. G.; Otake, K.-i.; Li, P.; Li, P.; Wang, X.; Wasson, M. C.; Zosel, K.; Evans, A. M.; Robison, L.; Islamoglu, T.; Zhang, X.; Dichtel, W. R.; Stoddart, J. F.; Gomez-Gualdron, D. A.; Gagliardi, L.; Farha, O. K. Discovery of spontaneous de-interpenetration through charged point- point repulsions. Chem 2022, 8, 225–242.
- 2
Park, K. C.; Kittikhunnatham, P.; Lim, J.; Thaggard, G. C.; Liu, Y.; Martin, C. R.; Leith, G. A.; Toler, D. J.; Ta, A. T.; Birkner, N.; Lehman-Andino, I.; Hernandez-Jimenez, A.; Morrison, G.; Amoroso, J. W.; zur Loye, H.-C.; DiPrete, D. P.; Smith, M. D.; Brinkman, K. S.; Phillpot, S. R.; Shustova, N. B. f-block MOFs: A Pathway to Heterometallic Transuranics. Angew. Chem. Int. Ed. 2022, 135, e202216349.
10.1002/ange.202216349 Google Scholar
- 3 Xu, Z.; Luo, T.; Mao, J.; McCleary, C.; Yuan, E.; Lin, W. Monte Carlo Simulation-Guided Design of a Thorium-Based Metal-Organic Framework for Efficient Radiotherapy-Radiodynamic Therapy. Angew. Chem. Int. Ed. 2022, 61, e202208685.
- 4 Chen, L.; Zhang, Y.; Weng, Z.; Liu, Z.; Zhang, J.; Wang, Y.; Wang, S. Uranyl Phosphonates with Multiple Uranyl Coordination Geometries and Low Temperature Phase Transition. Chin. J. Chem. 2021, 39, 597–604.
- 5 Martin, C. R.; Leith, G. A.; Kittikhunnatham, P.; Park, K. C.; Ejegbavwo, O. A.; Mathur, A.; Callahan, C. R.; Desmond, S. L.; Keener, M. R.; Ahmed, F.; Pandey, S.; Smith, M. D.; Phillpot, S. R.; Greytak, A. B.; Shustova, N. B. Heterometallic Actinide-Containing Photoresponsive Metal-Organic Frameworks: Dynamic and Static Tuning of Electronic Properties. Angew. Chem. Int. Ed. 2021, 60, 8072–8080.
- 6 Dolgopolova, E. A.; Ejegbavwo, O. A.; Martin, C. R.; Smith, M. D.; Setyawan, W.; Karakalos, S. G.; Henager, C. H.; zur Loye, H.-C.; Shustova, N. B. Multifaceted Modularity: A Key for Stepwise Building of Hierarchical Complexity in Actinide Metal–Organic Frameworks. J. Am. Chem. Soc. 2017, 139, 16852–16861.
- 7 Ejegbavwo, O. A.; Martin, C. R.; Olorunfemi, O. A.; Leith, G. A.; Ly, R. T.; Rice, A. M.; Dolgopolova, E. A.; Smith, M. D.; Karakalos, S. G.; Birkner, N.; Powell, B. A.; Pandey, S.; Koch, R. J.; Misture, S. T.; Loye, H.-C. z.; Phillpot, S. R.; Brinkman, K. S.; Shustova, N. B. Thermodynamics and Electronic Properties of Heterometallic Multinuclear Actinide-Containing Metal–Organic Frameworks with “Structural Memory”. J. Am. Chem. Soc. 2019, 141, 11628–11640.
- 8 Park, K. C.; Martin, C. R.; Leith, G. A.; Thaggard, G. C.; Wilson, G. R.; Yarbrough, B. J.; Maldeni Kankanamalage, B. K. P.; Kittikhunnatham, P.; Mathur, A.; Jatoi, I.; Manzi, M. A.; Lim, J.; Lehman-Andino, I.; Hernandez-Jimenez, A.; Amoroso, J. W.; DiPrete, D. P.; Liu, Y.; Schaeperkoetter, J.; Misture, S. T.; Phillpot, S. R.; Hu, S.; Li, Y.; Leydier, A.; Proust, V.; Grandjean, A.; Smith, M. D.; Shustova, N. B. Capture Instead of Release: Defect-Modulated Radionuclide Leaching Kinetics in Metal–Organic Frameworks. J. Am. Chem. Soc. 2022, 144, 16139–16149.
- 9 Zhang, Y.; Wang, X.; Xu, K.; Zhai, F.; Shu, J.; Tao, Y.; Wang, J.; Jiang, L.; Yang, L.; Wang, Y.; Liu, W.; Su, J.; Chai, Z.; Wang, S. Near-Unity Energy Transfer from Uranyl to Europium in a Heterobimetallic Organic Framework with Record-Breaking Quantum Yield. J. Am. Chem. Soc. 2023, 145, 13161–13168.
- 10 Lv, K.; Fichter, S.; Gu, M.; März, J.; Schmidt, M. An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coord. Chem. Rev. 2021, 446, 214011.
- 11 Dolgopolova, E. A.; Rice, A. M.; Shustova, N. B. Actinide-Based MOFs: a Middle Ground in Solution and Solid-State Structural Motifs. Chem. Commun. 2018, 54, 6472–6483.
- 12 Li, P.; Vermeulen, N. A.; Malliakas, C. D.; Gómez-Gualdrón, D. A.; Howarth, A. J.; Mehdi, B. L.; Dohnalkova, A.; Browning, N. D.; O'Keeffe, M.; Farha, O. K. Bottom-up construction of a superstructure in a porous uranium-organic crystal. Science 2017, 356, 624–627.
- 13 Zhang, Y.; Li, K.; Zhang, S.; Wang, X.; Zhang, H.; Wang, Y.; Wang, Y.; Chai, Z.; Wang, S. A Trivalent Americium Organic Framework with Decent Structural Stability against Self-Irradiation. Chin. J. Chem. 2022, 40, 801–805.
- 14 Zhang, Y.; Du, Y.; Li, L.; Tao, Y.; Li, K.; Zhang, H.; Wang, Y.; Chen, L.; Wang, Y.; Chai, Z.; Wang, S. A Tetravalent Plutonium Organic Framework Containing [Pu2O16] Dimers as Secondary Building Units: Synthesis, Structure, and Radiation Stability. Chin. J. Chem. 2023, 41, 1552–1556.
- 15 Zhang, Y.; Li, F.; Cui, Z.; Li, K.; Guan, J.; Tian, L.; Wang, Y.; Liu, N.; Wu, W.; Chai, Z.; Wang, S. A Radioluminescent Metal–Organic Framework for Monitoring 225Ac in vivo. J. Am. Chem. Soc. 2023, 145, 14679–14685.
- 16 Rice, A. M.; Martin, C. R.; Galitskiy, V. A.; Berseneva, A. A.; Leith, G. A.; Shustova, N. B. Photophysics Modulation in Photoswitchable Metal–Organic Frameworks. Chem. Rev. 2020, 120, 8790–8813.
- 17 Rice, A. M.; Leith, G. A.; Ejegbavwo, O. A.; Dolgopolova, E. A.; Shustova, N. B. Heterometallic Metal–Organic Frameworks (MOFs): The Advent of Improving the Energy Landscape. ACS Energy Lett. 2019, 4, 1938–1946.
- 18 Edelstein, N. M.; Fuger, J.; Morss, L. R. The Chemistry of the Actinide and Transactinide Elements, Springer, 2010.
- 19 McLennan, S. M.; Nance, W. B.; Taylor, S. R. Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust. Geochim. Cosmochim. Acta 1980, 44, 1833–1839.
- 20 Xu, H.; Cao, C.-S.; Hu, H.-S.; Wang, S.-B.; Liu, J.-C.; Cheng, P.; Kaltsoyannis, N.; Li, J.; Zhao, B. High Uptake of ReO4− and CO2 Conversion by a Radiation-Resistant Thorium–Nickle [Th48Ni6] Nanocage- Based Metal–Organic Framework. Angew. Chem. Int. Ed. 2019, 58, 6022–6027.
- 21 Li, Y.; Yang, Z.; Wang, Y.; Bai, Z.; Zheng, T.; Dai, X.; Liu, S.; Gui, D.; Liu, W.; Chen, M.; Chen, L.; Diwu, J.; Zhu, L.; Zhou, R.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun. 2017, 8, 1354.
- 22 Zhu, L.; Sheng, D.; Xu, C.; Dai, X.; Silver, M. A.; Li, J.; Li, P.; Wang, Y.; Wang, Y.; Chen, L.; Xiao, C.; Chen, J.; Zhou, R.; Zhang, C.; Farha, O. K.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. Identifying the Recognition Site for Selective Trapping of 99TcO4– in a Hydrolytically Stable and Radiation Resistant Cationic Metal–Organic Framework. J. Am. Chem. Soc. 2017, 139, 14873–14876.
- 23 Wang, Y.; Liu, W.; Bai, Z.; Zheng, T.; Silver, M. A.; Li, Y.; Wang, Y.; Wang, X.; Diwu, J.; Chai, Z.; Wang, S. Employing an Unsaturated Th4+ Site in a Porous Thorium–Organic Framework for Kr/Xe Uptake and Separation. Angew. Chem. Int. Ed. 2018, 57, 5783–5787.
- 24 Li, Z.-J.; Yu, J.; Qiu, J.; Zhang, Z.-H.; Zhang, L.; He, M.; Wang, J.-Q.; Lin, J. Post-synthetic linker installation: an unprecedented strategy to enhance iodine adsorption in metal-organic frameworks. Chem. Commun. 2023, 59, 4958–4961.
- 25 Fairley, M.; Gilson, S. E.; Hanna, S. L.; Mishra, A.; Knapp, J. G.; Idrees, K. B.; Chheda, S.; Traustason, H.; Islamoglu, T.; Burns, P. C.; Gagliardi, L.; Farha, O. K.; LaVerne, J. A. Linker Contribution toward Stability of Metal–Organic Frameworks under Ionizing Radiation. Chem. Mater. 2021, 33, 9285–9294.
- 26 Hastings, A. M.; Fairley, M.; Wasson, M. C.; Campisi, D.; Sarkar, A.; Emory, Z. C.; Brunson, K.; Fast, D. B.; Islamoglu, T.; Nyman, M.; Burns, P. C.; Gagliardi, L.; Farha, O. K.; Hixon, A. E.; LaVerne, J. A. Role of Metal Selection in the Radiation Stability of Isostructural M-UiO-66 Metal–Organic Frameworks. Chem. Mater. 2022, 34, 8403–8417.
- 27 Li, Z.-J.; Lei, M.; Bao, H.; Ju, Y.; Lu, H.; Li, Y.; Zhang, Z.-H.; Guo, X.; Qian, Y.; He, M.-Y.; Wang, J.-Q.; Liu, W.; Lin, J. A cationic thorium–organic framework with triple single-crystal-to-single-crystal transformation peculiarities for ultrasensitive anion recognition. Chem. Sci. 2021, 12, 15833–15842.
- 28 Li, Z.-J.; Ju, Y.; Wu, X.-L.; Li, X.; Qiu, J.; Li, Y.; Zhang, Z.-H.; He, M.-Y.; Zhang, L.; Wang, J.-Q.; Lin, J. Topological control of metal–organic frameworks toward highly sensitive and selective detection of chromate and dichromate. Inorg. Chem. Front. 2023, 10, 1721–1730.
- 29 Li, Z.-J.; Ju, Y.; Yu, B.; Wu, X.; Lu, H.; Li, Y.; Zhou, J.; Guo, X.; Zhang, Z.-H.; Lin, J.; Wang, J.-Q.; Wang, S. Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chem. Commun. 2020, 56, 6715–6718.
- 30 Li, Z.-J.; Yue, Z.; Ju, Y.; Wu, X.; Ren, Y.; Wang, S.; Li, Y.; Zhang, Z.-H.; Guo, X.; Lin, J.; Wang, J.-Q. Ultrastable Thorium Metal–Organic Frameworks for Efficient Iodine Adsorption. Inorg. Chem. 2020, 59, 4435–4442.
- 31 He, L.; Chen, L.; Dong, X.; Zhang, S.; Zhang, M.; Dai, X.; Liu, X.; Lin, P.; Li, K.; Chen, C.; Pan, T.; Ma, F.; Chen, J.; Yuan, M.; Zhang, Y.; Chen, L.; Zhou, R.; Han, Y.; Chai, Z.; Wang, S. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem 2021, 7, 699–714.
- 32 Kaplan, D. I.; Denham, M. E.; Zhang, S.; Yeager, C.; Xu, C.; Schwehr, K. A.; Li, H. P.; Ho, Y. F.; Wellman, D.; Santschi, P. H. Radioiodine Biogeochemistry and Prevalence in Groundwater. Crit. Rev. Env. Sci. Technol. 2014, 44, 2287–2335.
- 33 Strom, R. N.; Kaback, D. S. SRP Baseline Hydrogeologic Investigation: Aquifer Characterization. Groundwater Geochemistry of the Savannah River Site and Vicinity, Westinghouse Savannah River Co., Aiken, SC (United States), 1992.
- 34 Zhang, S.; Du, J.; Xu, C.; Schwehr, K. A.; Ho, Y. F.; Li, H. P.; Roberts, K. A.; Kaplan, D. I.; Brinkmeyer, R.; Yeager, C. M.; Chang, H.-s.; Santschi, P. H. Concentration-Dependent Mobility, Retardation, and Speciation of Iodine in Surface Sediment from the Savannah River Site. Environ. Sci. Technol. 2011, 45, 5543–5549.
- 35 Zhang, S.; Xu, C.; Creeley, D.; Ho, Y.-F.; Li, H.-P.; Grandbois, R.; Schwehr, K. A.; Kaplan, D. I.; Yeager, C. M.; Wellman, D.; Santschi, P. H. Iodine-129 and Iodine-127 Speciation in Groundwater at the Hanford Site, U.S.: Iodate Incorporation into Calcite. Environ. Sci. Technol. 2013, 47, 9635–9642.
- 36 Moore, R. C.; Pearce, C. I.; Morad, J. W.; Chatterjee, S.; Levitskaia, T. G.; Asmussen, R. M.; Lawter, A. R.; Neeway, J. J.; Qafoku, N. P.; Rigali, M. J.; Saslow, S. A.; Szecsody, J. E.; Thallapally, P. K.; Wang, G.; Freedman, V. L. Iodine immobilization by materials through sorption and redox-driven processes: A literature review. Sci. Total Environ. 2020, 716, 132820.
- 37 Spek, A. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr., Sect. C 2015, 71, 9–18.
- 38 Wang, X.; Li, Z.-J.; Ju, Y.; Li, X.; Qian, J.; He, M.-Y.; Wang, J.-Q.; Zhang, Z.-H.; Lin, J. A MOF-based luminometric sensor for ultra-sensitive and highly selective detection of chromium oxyanions. Talanta 2023, 252, 123894.
- 39 Liu, D.; Liu, T.-F.; Chen, Y.-P.; Zou, L.; Feng, D.; Wang, K.; Zhang, Q.; Yuan, S.; Zhong, C.; Zhou, H.-C. A Reversible Crystallinity-Preserving Phase Transition in Metal Organic Frameworks: Discovery, Mechanistic Studies, and Potential Applications. J. Am. Chem. Soc. 2015, 137, 7740–7746.
- 40 Yuan, S.; Chen, Y.-P.; Qin, J.; Lu, W.; Wang, X.; Zhang, Q.; Bosch, M.; Liu, T.-F.; Lian, X.; Zhou, H.-C. Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2015, 54, 14696–14700.
- 41 Ma, J.; Kalenak, A. P.; Wong-Foy, A. G.; Matzger, A. J. Rapid Guest Exchange and Ultra-Low Surface Tension Solvents Optimize Metal–Organic Framework Activation. Angew. Chem. Int. Ed. 2017, 56, 14618–14621.
- 42 Andrade, P. H. M.; Henry, N.; Volkringer, C.; Loiseau, T.; Vezin, H.; Hureau, M.; Moissette, A. Iodine Uptake by Zr-/Hf-Based UiO-66 Materials: The Influence of Metal Substitution on Iodine Evolution. ACS Appl. Mater. Interfaces 2022, 14, 29916–29933.
- 43 Zhang, X.; Maddock, J.; Nenoff, T. M.; Denecke, M. A.; Yang, S.; Schröder, M. Adsorption of iodine in metal–organic framework materials. Chem. Soc. Rev. 2022, 51, 3243–3262.
- 44 Ju, Y.; Li, Z.-J.; Qiu, J.; Li, X.; Yang, J.; Zhang, Z.-H.; He, M.-Y.; Wang, J.-Q.; Lin, J. Adsorption and Detection of Iodine Species by a Thorium-Based Metal–Organic Framework. Inorg. Chem. 2023, 62, 8158–8165.
- 45 Fu, Y.; Wang, X.; Ju, Y.; Zheng, Z.; Jian, J.; Li, Z.-J.; Jin, C.; Wang, J.-Q.; Lin, J. A robust thorium–organic framework as a bifunctional platform for iodine adsorption and Cr(vi) sensitization. Dalton Trans. 2023, 52, 1177–1181.
- 46 Hsu, S. L.; Signorelli, A. J.; Pez, G. P.; Baughman, R. H. Highly conducting iodine derivatives of polyacetylene: Raman, XPS and X-ray diffraction studies. J. Chem. Phys. 1978, 69, 106–111.
- 47 Tian, Z.; Chee, T.-S.; Zhang, X.; Lei, L.; Xiao, C. Novel bismuth-based electrospinning materials for highly efficient capture of radioiodine. Chem. Eng. J. 2021, 412, 128687.
- 48 Tian, Z.; Chee, T.-S.; Zhu, L.; Duan, T.; Zhang, X.; Lei, L.; Xiao, C. Comprehensive comparison of bismuth and silver functionalized nickel foam composites in capturing radioactive gaseous iodine. J. Hazard. Mater. 2021, 417, 125978.
- 49 Leloire, M.; Walshe, C.; Devaux, P.; Giovine, R.; Duval, S.; Bousquet, T.; Chibani, S.; Paul, J.-F.; Moissette, A.; Vezin, H.; Nerisson, P.; Cantrel, L.; Volkringer, C.; Loiseau, T. Capture of Gaseous Iodine in Isoreticular Zirconium-Based UiO-n Metal-Organic Frameworks: Influence of Amino Functionalization, DFT Calculations, Raman and EPR Spectroscopic Investigation. Chem. - Eur. J. 2022, 28, e202104437.
- 50 Masih, D.; Chernikova, V.; Shekhah, O.; Eddaoudi, M.; Mohammed, O. F. Zeolite-like Metal–Organic Framework (MOF) Encaged Pt(II)-Porphyrin for Anion-Selective Sensing. ACS Appl. Mater. Interfaces 2018, 10, 11399–11405.
- 51 Gehlen, M. H. The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. C 2020, 42, 100338.
- 52 Yang, Y.-J.; Li, Y.-H.; Liu, D.; Cui, G.-H. A dual-responsive luminescent sensor based on a water-stable Cd(ii)-MOF for the highly selective and sensitive detection of acetylacetone and Cr2O72− in aqueous solutions. CrystEngComm 2020, 22, 1166–1175.
- 53 Huang, X.; Li, Y.; Chen, Y.; Wang, L. Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens. Actuators B Chem. 2008, 134, 780–786.
- 54 Li, Y. C.; Bu, W. F.; Wu, L. X.; Sun, C. Q. A New amperometric sensor for the determination of bromate, iodate and hydrogen peroxide based on titania sol-gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method. Sens. Actuators B Chem. 2005, 107, 921–928.
- 55 Salimi, A.; Noorbakhsh, A.; Ghadermarzi, M. Amperometric detection of nitrite, iodate and periodate at glassy carbon electrode modified with catalase and multi-wall carbon nanotubes. Sens. Actuators B Chem. 2007, 123, 530–537.
- 56 Wang, B.; Meng, R.-Q.; Xu, L.-X.; Wu, L.-X.; Bi, L.-H. A novel detection of nitrite, iodate and bromate based on a luminescent polyoxometalate. Anal. Methods 2013, 5, 885–890.
- 57 Bruker APEX3 Software Suite, Bruker AXS Inc., Madison, WI, 2016.
- 58 Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8.
- 59 Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8.
- 60 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.
- 61 Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C 2015, 71, 9–18.