Exploring the Mechanism, Advancements, and Application of Thermogalvanic Effect in Hydrogels
Xiaoyu Yang
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071000 China
Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei, 071003 China
Search for more papers by this authorCorresponding Author
Peng Wang
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071000 China
Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei, 071003 China
E-mail: [email protected]Search for more papers by this authorXiaolong Wu
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071000 China
Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei, 071003 China
Search for more papers by this authorYongli Liao
Electric Power Research Institute, China South Power Grid, Guangzhou, Guangdong, 510000 China
Search for more papers by this authorSenyun Liu
Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan, 621000 China
Search for more papers by this authorWei Duan
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071000 China
Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei, 071003 China
Search for more papers by this authorYing Yue
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071000 China
Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei, 071003 China
Search for more papers by this authorXiaoyu Yang
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071000 China
Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei, 071003 China
Search for more papers by this authorCorresponding Author
Peng Wang
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071000 China
Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei, 071003 China
E-mail: [email protected]Search for more papers by this authorXiaolong Wu
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071000 China
Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei, 071003 China
Search for more papers by this authorYongli Liao
Electric Power Research Institute, China South Power Grid, Guangzhou, Guangdong, 510000 China
Search for more papers by this authorSenyun Liu
Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan, 621000 China
Search for more papers by this authorWei Duan
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071000 China
Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei, 071003 China
Search for more papers by this authorYing Yue
School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071000 China
Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding, Hebei, 071003 China
Search for more papers by this authorComprehensive Summary
The issue of energy consumption has garnered significant interest due to its excessive usage. Recently, thermoelectric devices have been getting increased attention, as they can harness waste heat from various sources, such as solar radiation, human body, and industrial processes. Traditionally, the recovery of low-grade heat has been a challenge, resulting in unsustainable energy use and significant losses. While considerable advances have been made in thermoelectric materials in recent decades, the majority of these devices still primarily employ semiconductors. Nevertheless, the emergence of quasi-solid-state thermoelectric materials represents a novel development with profound promise for the environment and society. These materials offer several advantages, such as improved energy conversion capacities, cost-effectiveness, versatility, and scalability, to support increased usage. Additionally, this review explores the application of thermoelectric materials in self-powered sensors, integrated modules, and heat harvesting management. Lastly, the potential of high-performance thermocouples based on thermogalvanic effects is assessed, along with the challenges that must be overcome to realize this goal.
References
- 1 Han, Y.; Zhang, J.; Hu, R.; Xu, D. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci. Adv. 2022, 8, eabl5318.
- 2 Mu, K.; Mu, Y.; Wang, X.; Wu, X.; Pang, C.; Huang, Y.-T.; Feng, S.-P. Direct Thermal Charging Cell Using Nickel Hexacyanoferrate (ΙΙ) Anode for Green Recycling of Low-Grade Heat. ACS Energy Lett. 2022, 7, 1146–1153.
- 3 Li, T.; Zhang, X.; Lacey, S. D.; Mi, R.; Zhao, X.; Jiang, F.; Song, J.; Liu, Z.; Chen, G.; Dai, J.; Yao, Y.; Das, S.; Yang, R.; Briber, R. M.; Hu, L. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 2019, 18, 608–613.
- 4 Duan, J.; Yu, B.; Huang, L.; Hu, B.; Xu, M.; Feng, G.; Zhou, J. Liquid-state thermocells: Opportunities and challenges for low-grade heat harvesting. Joule 2021, 5, 768–779.
- 5 Yu, B.; Duan, J.; Cong, H.; Xie, W.; Liu, R.; Zhuang, X.; Wang, H.; Qi, B.; Xu, M.; Wang, Z. L.; Zhou, J. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 2020, 370, 342–346.
- 6 Li, W.; Ma, J.; Qiu, J.; Wang, S. Thermocells-enabled low-grade heat harvesting: challenge, progress, and prospects. Mater. Today Energy 2022, 27, 101032.
- 7 Sun, S.; Li, M.; Shi, X.-L.; Chen, Z.-G. Advances in Ionic Thermoelectrics: From Materials to Devices. Adv. Energy Mater. 2023, 13, 2203692.
- 8 He, X.; Sun, H.; Li, Z.; Chen, X.; Wang, Z.; Niu, Y.; Jiang, J.; Wang, C. Redox-induced thermocells for low-grade heat harvesting: mechanism, progress, and their applications. J. Mater. Chem. A 2022, 10, 20730–20755.
- 9
Zhao, W.; Wang, Z.; Hu, R.; Luo, X. Gel-based thermocells for low-grade heat harvesting. EPL (Europhys, Lett.) 2021, 135, 26001.
10.1209/0295-5075/ac2075 Google Scholar
- 10 Duan, J.; Feng, G.; Yu, B.; Li, J.; Chen, M.; Yang, P.; Feng, J.; Liu, K.; Zhou, J. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat. Commun. 2018, 9, 5146.
- 11 Zong, Y.; Li, H.; Li, X.; Lou, J.; Ding, Q.; Liu, Z.; Jiang, Y.; Han, W. Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting. Chem. Eng. J. 2022, 433, 134550.
- 12 Xie, G.; Li, P.; Zhang, Z.; Xiao, K.; Kong, X.-Y.; Wen, L.; Jiang, L. Skin-Inspired Low-Grade Heat Energy Harvesting Using Directed Ionic Flow through Conical Nanochannels. Adv. Energy Mater. 2018, 8, 1800459.
- 13 Wei, X.; Zhao, Z.; Wang, L.; Jin, X.; Yuan, Z.; Wu, Z.; Wang, Z. L. Energy conversion system based on Curie effect and triboelectric nanogenerator for low-grade heat energy harvesting. Nano Energy 2022, 91, 106652.
- 14 Li, Z.; An, Y.; Dong, S.; Chen, C.; Wu, L.; Sun, Y.; Zhang, X. Progress on zinc ion hybrid supercapacitors: Insights and challenges. Energy Storage Mater. 2020, 31, 252–266.
- 15 Li, Z.; Xu, Y.; Wu, L.; An, Y.; Sun, Y.; Meng, T.; Dou, H.; Xuan, Y.; Zhang, X. Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nat. Commun. 2022, 13, 132.
- 16 Hu, L.; Wu, H.; Zhu, T.; Fu, C.; He, J.; Ying, P.; Zhao, X. Tuning Multiscale Microstructures to Enhance Thermoelectric Performance of n-Type Bismuth-Telluride-Based Solid Solutions. Adv. Energy Mater. 2015, 5, 1500411.
- 17 Xu, C.; Sun, Y.; Zhang, J.; Xu, W.; Tian, H. Adaptable and Wearable Thermocell Based on Stretchable Hydrogel for Body Heat Harvesting. Adv. Energy Mater. 2022, 12, 2201542.
- 18 Li, X.; Li, J.; Wang, T.; Khan, S. A.; Yuan, Z.; Yin, Y.; Zhang, H. Self-Powered Respiratory Monitoring Strategy Based on Adaptive Dual-Network Thermogalvanic Hydrogels. ACS Appl. Mater. Interfaces 2022, 14, 48743–48751.
- 19 Li, F.; Xue, H.; Lin, X.; Zhao, H.; Zhang, T. Wearable Temperature Sensor with High Resolution for Skin Temperature Monitoring. ACS Appl. Mater. Interfaces 2022, 14, 43844–43852.
- 20 Mu, X.; Zhou, J.; Wang, P.; Chen, H.; Yang, T.; Chen, S.; Miao, L.; Mori, T. A robust starch–polyacrylamide hydrogel with scavenging energy harvesting capacity for efficient solar thermoelectricity–freshwater cogeneration. Energy Environ. Sci. 2022, 15, 3388–3399.
- 21 Pu, S.; Liao, Y.; Chen, K.; Fu, J.; Zhang, S.; Ge, L.; Conta, G.; Bouzarif, S.; Cheng, T.; Hu, X.; Liu, K.; Chen, J. Thermogalvanic Hydrogel for Synchronous Evaporative Cooling and Low-Grade Heat Energy Harvesting. Nano Lett. 2020, 20, 3791–3797.
- 22 Bai, C.; Li, X.; Cui, X.; Yang, X.; Zhang, X.; Yang, K.; Wang, T.; Zhang, H. Transparent stretchable thermogalvanic PVA/gelation hydrogel electrolyte for harnessing solar energy enabled by a binary solvent strategy. Nano Energy 2022, 100, 107449.
- 23 Cheng, H.; He, X.; Fan, Z.; Ouyang, J. Flexible Quasi-Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties. Adv. Energy Mater. 2019, 9, 1901085.
- 24 Horike, S.; Wei, Q.; Kirihara, K.; Mukaida, M.; Sasaki, T.; Koshiba, Y.; Fukushima, T.; Ishida, K. Outstanding Electrode-Dependent Seebeck Coefficients in Ionic Hydrogels for Thermally Chargeable Supercapacitor near Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 43674–43683.
- 25 Lei, Z.; Gao, W.; Wu, P. Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting. Joule 2021, 5, 2211–2222.
- 26 Bai, C.; Wang, Z.; Yang, S.; Cui, X.; Li, X.; Yin, Y.; Zhang, M.; Wang, T.; Sang, S.; Zhang, W.; Zhang, H. Wearable Electronics Based on the Gel Thermogalvanic Electrolyte for Self-Powered Human Health Monitoring. ACS Appl. Mater. Interfaces 2021, 13, 37316–37322.
- 27 Liu, C.; Li, Q.; Wang, S.; Liu, W.; Fang, N. X.; Feng, S.-P. Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting. Nano Energy 2022, 92, 106738.
- 28 Peng, P.; Zhou, J.; Liang, L.; Huang, X.; Lv, H.; Liu, Z.; Chen, G. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells. Nanomicro Lett. 2022, 14, 81.
- 29 Kang, S.; Snyder, G. Charge-transport model for conducting polymers. Nat. Mater. 2017, 16, 252–257.
- 30 Liu, Z.; Chen, G. Advancing Flexible Thermoelectric Devices with Polymer Composites. Adv. Mater. Technol. 2020, 5, 2000049.
- 31 Massetti, M.; Jiao, F.; Ferguson, A. J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J. L.; Crispin, X.; Fabiano, S. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chem. Rev. 2021, 121, 12465–12547.
- 32 He, Z.; Zhou, Z.; Yuan, W. Highly Adhesive, Stretchable, and Antifreezing Hydrogel with Excellent Mechanical Properties for Sensitive Motion Sensors and Temperature-/Humidity-Driven Actuators. ACS Appl. Mater. Interfaces 2022, 14, 38205–38215.
- 33 Zhang, D.; Mao, Y.; Ye, F.; Li, Q.; Bai, P.; He, W.; Ma, R. Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization. Energy Environ. Sci. 2022, 15, 2974–2982.
- 34 Kim, T.; Lee, J. S.; Lee, G.; Yoon, H.; Yoon, J.; Kang, T. J.; Kim, Y. H. High thermopower of ferri/ferrocyanide redox couple in organic- water solutions. Nano Energy 2017, 31, 160–167.
- 35 Tian, C.; Bai, C.; Wang, T.; Yan, Z.; Zhang, Z.; Zhuo, K.; Zhang, H. Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple of SO4/32- ions. Nano Energy 2023, 106, 108077.
- 36 Wang, H.; Zhuang, X.; Xie, W.; Jin, H.; Liu, R.; Yu, B.; Duan, J.; Huang, L.; Zhou, J. Thermosensitive-CsI3-crystal-driven high-power I−/I3− thermocells. Cell Rep. Phys. Sci. 2022, 3, 100737.
- 37 Yang, P.; Yang, J. L.; Liu, K.; Fan, H. J. Hydrogels Enable Future Smart Batteries. ACS Nano 2022, 16, 15528–15536.
- 38 Wang, P.; Zhang, X.; Duan, W.; Teng, W.; Liu, Y.; Xie, Q. Superhydrophobic Flexible Supercapacitors Formed by Integrating Hydrogel with Functional Carbon Nanomaterials. Chin. J. Chem. 2021, 39, 1153–1158.
- 39
Rajasekharan Pillai, V. N.; Mutter, M. Synthetic hydrophilic polymers. Naturwissenschaften 1981, 68, 558–566.
10.1007/BF00401664 Google Scholar
- 40 Sabbagh, F.; Muhamad, I. I. Physical and Chemical Characterisation of Acrylamide-Based Hydrogels, Aam, Aam/NaCMC and Aam/ NaCMC/MgO. J. Inorg. Organomet. Polym. 2017, 27, 1439–1449.
- 41 He, Y.; Wang, F.; Wang, X.; Zhang, J.; Wang, D.; Huang, X. A photocurable hybrid chitosan/acrylamide bioink for DLP based 3D bioprinting. Mater. Des. 2021, 202,109588.
- 42 Peng, K.; Yang, K.; Fan, Y.; Yasin, A.; Hao, X.; Yang, H. Thermal/Light Dual-Activated Shape Memory Hydrogels Composed of an Agarose/ Poly(acrylamide-co-acrylic acid) Interpenetrating Network. Macromol. Chem. Phys. 2017, 218, 1700170.
- 43 Adelnia, H.; Ensandoost, R.; Shebbrin Moonshi, S.; Gavgani, J. N.; Vasafi, E. I.; Ta, H. T. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur. Polym. J. 2022, 164, 110974.
- 44 Christie, M. H.; Nikolaos, A. P. Structure and Morphology of Freeze/ Thawed PVA Hydrogels. Macromolecules 2000, 33, 2472–2479.
- 45 He, Y.; Zhang, Q.; Cheng, H.; Liu, Y.; Shu, Y.; Geng, Y.; Zheng, Y.; Qin, B.; Zhou, Y.; Chen, S.; Li, J.; Li, M.; Odunmbaku, G. O.; Li, C.; Shumilova, T.; Ouyang, J.; Sun, K. Role of Ions in Hydrogels with an Ionic Seebeck Coefficient of 52.9 mV K-1. J. Phys. Chem. Lett. 2022, 13, 4621–4627.
- 46 Lei, Z.; Gao, W.; Zhu, W.; Wu, P. Anti-Fatigue and Highly Conductive Thermocells for Continuous Electricity Generation. Adv. Funct. Mater. 2022, 32, 2201021.
- 47 Yang, S.; Tao, X.; Chen, W.; Mao, J.; Luo, H.; Lin, S.; Zhang, L.; Hao, J. Ionic Hydrogel for Efficient and Scalable Moisture-Electric Generation. Adv. Mater. 2022, 34, e2200693.
- 48 Yin, L.; Cao, M.; Kim, K. N.; Lin, M.; Moon, J.-M.; Sempionatto, J. R.; Yu, J.; Liu, R.; Wicker, C.; Trifonov, A.; Zhang, F.; Hu, H.; Moreto, J. R.; Go, J.; Xu, S.; Wang, J. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic display. Nat. Electron. 2022, 5, 694–705.
- 49 Chang, C.; Lue, A.; Zhang, L. Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels. Macromol. Chem. Phys. 2008, 209, 1266–1273.
- 50 Kumar, A.; Han, S. S. PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2016, 66, 159–182.
- 51
Petty-Weeks, S.; Polak, A. J. Differential scanning calorimetry and complex admittance analysis of PVA/H3PO4 proton conducting polymer blends. Sens. Actuators 1987, 11, 337–386.
10.1016/0250-6874(87)80077-X Google Scholar
- 52 Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C. A review of polymer electrolytes: fundamental, approaches and applications. Ionics 2016, 22, 1259–1279.
- 53 Zhang, J.; Yao, X.; Misra, R. K.; Cai, Q.; Zhao, Y. Progress in electrolytes for beyond-lithium-ion batteries. J. Mater. Sci. Technol. 2020, 44, 237–257.
- 54 Sharma, B.; Malik, P.; Jain, P. Biopolymer reinforced nanocomposites: A comprehensive review. Mater. Today Commun. 2018, 16, 353–363.
- 55 Zou, D.; Nunes, S. P.; Vankelecom, I. F. J.; Figoli, A.; Lee, Y. M. Recent advances in polymer membranes employing non-toxic solvents and materials. Green Chem. 2021, 23, 9815–9843.
- 56 Fu, F.; Yang, D.; Zhang, W.; Wang, H.; Qiu, X. Green self-assembly synthesis of porous lignin-derived carbon quasi-nanosheets for high- performance supercapacitors. Chem. Eng. J. 2020, 392, 123721.
- 57 Chen, B.; Chen, Q.; Xiao, S.; Feng, J.; Zhang, X.; Wang, T. Giant negative thermopower of ionic hydrogel by synergistic coordination and hydration interactions. Sci. Adv. 2021, 7, eabi7233.
- 58 Fang, R.; Li, X.; Khan, S. A.; Wang, Z.; Cui, X.; Zhang, H.; Lin, Z.-H. Anhydrous Thermogalvanic Gel for Simultaneous Waste Heat Recovery and Thermal Management of Electronics. ACS Appl. Polym. Mater. 2023, 5, 4628–4635.
- 59 Zong, Y.; Chen, L.; Li, X.; Ding, Q.; Han, W.; Lou, J. Highly robust and sensitive dual-network freeze-resistant organic hydrogel thermocells. Carbohydr. Polym. 2023, 314, 120958.
- 60 Gao, W.; Lei, Z.; Zhang, C.; Liu, X.; Chen, Y. Stretchable and Freeze- Tolerant Organohydrogel Thermocells with Enhanced Thermoelectric Performance Continually Working at Subzero Temperatures. Adv. Funct. Mater. 2021, 31, 2104071.
- 61 Yin, P.; Geng, Y.; Zhao, L.; Meng, Q.; Xin, Z.; Luo, L.; Wang, B.; Mao, Z.; Sui, X.; Wu, W.; Feng, X. Robust and flexible bacterial cellulose-based thermogalvanic cells for low-grade heat harvesting in extreme environments. Chem. Eng. J. 2023, 457, 141274.
- 62 Milowska, K. Z.; Majewski, J. A. Functionalization of carbon nanotubes with -CH(n), -NH(n) fragments, -COOH and -OH groups. J. Chem. Phys. 2013, 138, 194704.
- 63 Pal, K.; Banthia, A. K.; Majumdar, D. K. Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech 2007, 8, 21.
- 64 Lee, H. Y.; Park, S. H.; Kim, J. H.; Kim, M. S. Temperature-responsive hydrogels via the electrostatic interaction of amphiphilic diblock copolymers with pendant-ion groups. Polym. Chem. 2017, 8, 6606–6616.
- 65 Han, C.-G.; Qian, X.; Li, Q.; Deng, B.; Zhu, Y.; Han, Z.; Zhang, W.; Wang, W.; Feng, S.-P.; Chen, G.; Liu, W. Giant thermopower of ionic gelatin near room temperature. Science 2020, 368, 1091–1098.
- 66
Fu, M.; Sun, Z.; Liu, X.; Huang, Z.; Luan, G.; Chen, Y.; Peng, J.; Yue, K. Highly Stretchable, Resilient, Adhesive, and Self-Healing Ionic Hydrogels for Thermoelectric Application. Adv. Funct. Mater. 2023, 43, 2306086.
10.1002/adfm.202306086 Google Scholar
- 67 Lei, W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K.; Fujishima, A.; Liu, M. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.
- 68 Simič, R.; Yetkin, M.; Zhang, K.; Spencer, N. D. Importance of Hydration and Surface Structure for Friction of Acrylamide Hydrogels. Tribol. Lett. 2020, 68, 64.
- 69 Hua, J.; Ng, P. F.; Fei, B. High-strength hydrogels: Microstructure design, characterization and applications. J. Polym. Sci., Part B: Polym. Phys. 2018, 56, 1325–1335.
- 70 Mu, Q.; Cui, K.; Wang, Z. J.; Matsuda, T.; Cui, W.; Kato, H.; Namiki, S.; Yamazaki, T.; Frauenlob, M.; Nonoyama, T.; Tsuda, M.; Tanaka, S.; Nakajima, T.; Gong, J. P. Force-triggered rapid microstructure growth on hydrogel surface for on-demand functions. Nat. Commun. 2022, 13, 6213.
- 71 Koh, W.-G.; Revzin, A.; Pishko, M. V. Poly(ethylene glycol) Hydrogel Microstructures Encapsulating Living Cells. Langmuir 2002, 18, 2459–2462.
- 72 Sarker, B.; Papageorgiou, D. G.; Silva, R.; Zehnder, T.; Gul-E-Noor, F.; Bertmer, M.; Kaschta, J.; Chrissafis, K.; Detsch, R.; Boccaccini, A. R. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J. Mater. Chem. B 2014, 2, 1470–1482.
- 73 Revzin, A.; Russell, R. J.; Yadavalli, V. K.; Koh, W.-G.; Deister, C.; Hile, D. D.; Mellott, M. B.; Pishko, M. V. Fabrication of Poly(ethylene glycol) Hydrogel Microstructures Using Photolithography. Langmuir 2001, 17, 5440–5447.
- 74 Zhang, Y.; Chen, H.; Li, J. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering. Int. J. Biol. Macromol. 2022, 221, 91–107.
- 75 Yang, W.; Yu, H.; Liang, W.; Wang, Y.; Liu, L. Rapid Fabrication of Hydrogel Microstructures Using UV-Induced Projection Printing. Micromachines 2015, 6, 1903–1913.
- 76 Guan, J.; He, H.; Hansford, D. J.; Lee, L. J. Self-Folding of Three-Dimensional Hydrogel Microstructures. J. Phys. Chem. B 2005, 109, 23134–23137.
- 77 Fukuie, K.; Iwata, Y.; Iwase, E. Design of Substrate Stretchability Using Origami-Like Folding Deformation for Flexible Thermoelectric Generator. Micromachines 2018, 9, 315.
- 78 Zou, J.; Wu, S.; Chen, J.; Lei, X.; Li, Q.; Yu, H.; Tang, S.; Ye, D. Highly Efficient and Environmentally Friendly Fabrication of Robust, Programmable, and Biocompatible Anisotropic, All-Cellulose, Wrinkle-Patterned Hydrogels for Cell Alignment. Adv. Mater. 2019, 31, e1904762.
- 79 Kato, M.; Kashihara, Y.; Asoh, T.-A.; Uyama, H. Geometry Control of Wrinkle Structures Aligned on Hydrogel Surfaces. Langmuir 2020, 36, 1467–1473.
- 80 Kim, J. Y.; Oh, J. Y.; Lee, T. I. Multi-dimensional nanocomposites for stretchable thermoelectric applications. Appl. Phys. Lett. 2019, 114, 043902.
- 81 Guan, Q.-F.; Han, Z.-M.; Zhu, Y.; Xu, W.-L.; Yang, H.-B.; Ling, Z.-C.; Yan, B.-B.; Yang, K.-P.; Yin, C.-H.; Wu, H.; Yu, S.-H. Bio-Inspired Lotus-Fiber-like Spiral Hydrogel Bacterial Cellulose Fibers. Nano Lett. 2021, 21, 952–958.
- 82 Nan, K.; Kang, S. D.; Li, K.; Yu, K. J.; Zhu, F.; Wang, J.; Dunn, A. C.; Zhou, C.; Xie, Z.; Agne, M. T.; Wang, H.; Luan, H.; Zhang, Y.; Huang, Y.; Snyder, G. J.; Rogers, J. A. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 2018, 4, eaau5849.
- 83 Liu, J.; Zhu, Z.; Zhou, W.; Liu, P.; Liu, P.; Liu, G.; Xu, J.; Jiang, Q.; Jiang, F. Flexible metal-free hybrid hydrogel thermoelectric fibers. J. Mater. Sci. 2020, 55, 8376–8387.
- 84 Sun, T.; Zhou, B.; Zheng, Q.; Wang, L.; Jiang, W.; Snyder, G. J. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 2020, 11, 572.
- 85 Hao, Y.; He, X.; Wang, L.; Qin, X.; Chen, G.; Yu, J. Stretchable Thermoelectrics: Strategies, Performances, and Applications. Adv. Funct. Mater. 2021, 32, 2109790.
- 86 Sun, T.; Wang, L.; Jiang, W. Pushing thermoelectric generators toward energy harvesting from the human body: Challenges and strategies. Mater. Today 2022, 57, 121–145.
- 87 Wang, C.; Wang, C.; Huang, Z.; Xu, S. Materials and Structures toward Soft Electronics. Adv. Mater. 2018, 30, e1801368.
- 88
Sun, T.; Wang, L.; Jiang, W. Chapter 2 - Stretchable thermoelectric materials/devices for low-grade thermal energy harvesting. In Low-Grade Thermal Energy Harvesting, Ed.: Wang, S., Woodhead Publishing, 2022, pp. 11–40.
10.1016/B978-0-12-823690-1.00006-X Google Scholar
- 89 Feng, L.; Wang, K.; Zhang, X.; Sun, X.; Li, C.; Ge, X.; Ma, Y. Flexible Solid-State Supercapacitors with Enhanced Performance from Hierarchically Graphene Nanocomposite Electrodes and Ionic Liquid Incorporated Gel Polymer Electrolyte. Adv. Funct. Mater. 2018, 28, 1704463.
- 90 Lu, J.; Xiong, T.; Zhou, W.; Yang, L.; Tang, Z.; Chen, S. Metal Nickel Foam as an Efficient and Stable Electrode for Hydrogen Evolution Reaction in Acidic Electrolyte under Reasonable Overpotentials. ACS Appl. Mater. Interfaces 2016, 8, 5065–5069.
- 91 Zhao, J.; Zheng, X.; Deng, Y.; Li, T.; Shao, Y.; Gruverman, A.; Shield, J.; Huang, J. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 2016, 9, 3650–3656.
- 92 Cattin, L.; El Mahlali, A.; Cherif, M. A.; Touihri, S.; El Jouad, Z.; Mouchaal, Y.; Blanchard, P.; Louarn, G.; Essaidi, H.; Addou, M.; Khelil, A.; Torchio, P.; Bernède, J. C. New dielectric/metal/dielectric electrode for organic photovoltaic cells using Cu:Al alloy as metal. J. Alloys Compd. 2020, 819, 152974.
- 93 Bi, Y. G.; Liu, Y. F.; Zhang, X. L.; Yin, D.; Wang, W. Q.; Feng, J.; Sun, H. B. Ultrathin Metal Films as the Transparent Electrode in ITO-Free Organic Optoelectronic Devices. Adv. Opt. Mater. 2019, 7, 1800778.
- 94 Jung, S.-M.; Kwon, J.; Lee, J.; Han, I. K.; Kim, K.-S.; Kim, Y. S.; Kim, Y.-T. Cost-efficient nickel-based thermo-electrochemical cells for utilizing low-grade thermal energy. J. Power Sources 2021, 494, 229705.
- 95 Yu, B.; Xiao, H.; Zeng, Y.; Liu, S.; Wu, D.; Liu, P.; Guo, J.; Xie, W.; Duan, J.; Zhou, J. Cost-effective n-type thermocells enabled by thermosensitive crystallizations and 3D multi-structured electrodes. Nano Energy 2022, 93, 106795.
- 96 Jung, S.-M.; Kwon, J.; Lee, J.; Lee, B.-J.; Kim, K.-S.; Yu, D.-S.; Kim, Y.-T. Hybrid thermo-electrochemical energy harvesters for conversion of low-grade thermal energy into electricity via tungsten electrodes. Appl. Energy 2021, 299, 117334.
- 97 Berggren, M.; Malliaras, G. G. How conducting polymer electrodes operate. Science 2019, 364, 233–234.
- 98 Horike, S.; Wei, Q.; Kirihara, K.; Mukaida, M.; Koshiba, Y.; Ishida, K. Anomalous n-type conversion of thermoelectric polarity in ionic hydrogels using PEDOT:PSS electrodes. J. Mater. Chem. C 2021, 9, 15813–15819.
- 99 Jia, Z.; Wang, Z.; Xu, C.; Liang, J.; Wei, B.; Wu, D.; Zhu, S. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A 1999, 271, 395–400.
- 100 Kim, K. T.; Choi, S. Y.; Shin, E. H.; Moon, K. S.; Koo, H. Y.; Lee, G.-G.; Ha, G. H. The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite. Carbon 2013, 52, 541–549.
- 101 He, Y.; Lin, X.; Feng, Y.; Luo, B.; Liu, M. Carbon Nanotube Ink Dispersed by Chitin Nanocrystals for Thermoelectric Converter for Self-Powering Multifunctional Wearable Electronics. Adv. Sci. 2022, 9, 2204675.
- 102 Wang, P.; Chen, T.; Zhang, X.; Duan, W.; Zhang, C.; Han, H.; Xie, Q. A Superhydrophobic Hydrogel for Self-Healing and Robust Strain Sensor with Liquid Impalement Resistance. Chin. J. Chem. 2021, 39, 3393–3398.
- 103 Li, J.; Wang, Z.; Khan, S. A.; Li, N.; Huang, Z.; Zhang, H. Self-powered information conversion based on thermogalvanic hydrogel with interpenetrating networks for nursing aphasic patients. Nano Energy 2023, 113, 108612.
- 104 Yang, P.; Liu, K.; Chen, Q.; Mo, X.; Zhou, Y.; Li, S.; Feng, G.; Zhou, J. Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Angew Chem. Int. Ed. 2016, 55, 12050–12053.
- 105 Liu, L.; Zhang, D.; Bai, P.; Mao, Y.; Li, Q.; Guo, J.; Fang, Y.; Ma, R. Strong Tough Thermogalvanic Hydrogel Thermocell with Extraordinarily High Thermoelectric Performance. Adv. Mater. 2023, 35, 2300696.
- 106 Zhang, D.; Mao, Y.; Bai, P.; Li, Q.; He, W.; Cui, H.; Ye, F.; Li, C.; Ma, R.; Chen, Y. Multifunctional Superelastic Graphene-Based Thermoelec¬tric Sponges for Wearable and Thermal Management Devices. Nano Lett. 2022, 22, 3417–3424.