Strong and Superhydrophobic Wood with Aligned Cellulose Nanofibers as a Waterproof Structural Material†
Yongfeng Li
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
These authors contributed equally to this work.
Search for more papers by this authorChaoji Chen
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
These authors contributed equally to this work.
Search for more papers by this authorJianwei Song
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
These authors contributed equally to this work.
Search for more papers by this authorChunpeng Yang
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
These authors contributed equally to this work.
Search for more papers by this authorYudi Kuang
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorAzhar Vellore
Mechanical Engineering, University of California, Merced, California, 95343 USA
Search for more papers by this authorEmily Hitz
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorMingwei Zhu
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorFeng Jiang
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorYonggang Yao
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorAmy Gong
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorAshlie Martini
Mechanical Engineering, University of California, Merced, California, 95343 USA
Search for more papers by this authorCorresponding Author
Liangbing Hu
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
E-mail: [email protected]Search for more papers by this authorYongfeng Li
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
These authors contributed equally to this work.
Search for more papers by this authorChaoji Chen
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
These authors contributed equally to this work.
Search for more papers by this authorJianwei Song
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
These authors contributed equally to this work.
Search for more papers by this authorChunpeng Yang
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
These authors contributed equally to this work.
Search for more papers by this authorYudi Kuang
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorAzhar Vellore
Mechanical Engineering, University of California, Merced, California, 95343 USA
Search for more papers by this authorEmily Hitz
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorMingwei Zhu
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorFeng Jiang
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorYonggang Yao
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorAmy Gong
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
Search for more papers by this authorAshlie Martini
Mechanical Engineering, University of California, Merced, California, 95343 USA
Search for more papers by this authorCorresponding Author
Liangbing Hu
Department of Materials Science and Engineering, University of Maryland, College Park, Maryland, 20742 USA
E-mail: [email protected]Search for more papers by this author†Dedicated to Professor Lina Zhang on the occasion of her 80th birthday.
Summary of main observation and conclusion
Lightweight structural materials are important for the energy efficiency of applications, particularly those in the building sector. Here, inspired by nature, we developed a strong, superhydrophobic, yet lightweight material by simple in situ growth of nano-SiO2 and subsequent densification of the wood substrate. In situ generation of SiO2 nanoparticles both inside the wood channels and on the wood surfaces gives the material superhydrophobicity, with static and dynamic contact angles of 159.4o and 3o, respectively. Densification of the wood to remove most of the spaces among the lumen and cell walls results in a laminated, dense structure, with aligned cellulose nanofibers, which in turn contributes to a high mechanical strength up to 384.2 MPa (7-times higher than natural wood). Such treatment enables the strong and superhydrophobic wood (SH-Wood) to be stable and have excellent water, acid, and alkaline resistance. The high mechanical strength of SH-Wood combined with its excellent structural stability in harsh environments, as well its low density, positions the strong and superhydrophobic wood as a promising candidate for strong, lightweight, and durable structural materials that could potentially replace steel.
Supporting Information
Filename | Description |
---|---|
cjoc202000032-sup-0001-Supinfo.pdfPDF document, 2.4 MB |
Appendix S1: Supporting Information |
cjoc202000032-sup-0001-Movie_1.mp4MPEG-4 video, 1.5 MB |
Movie S1: Supporting Information |
cjoc202000032-sup-0002-Movie_2.mp4MPEG-4 video, 679.8 KB |
Movie S2: Supporting Information |
cjoc202000032-sup-0003-Movie_3.mp4MPEG-4 video, 8.9 MB |
Movie S3: Supporting Information |
cjoc202000032-sup-0004-Movie_4.mp4MPEG-4 video, 883.1 KB |
Movie S4: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Kelly, J. C.; Sullivan, J. L.; Burnham, A.; Elgowainy, A. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions. Environ. Sci. Technol. 2015, 49, 12535–12542.
- 2 Sartori, I.; Hestnes, A. G. Energy Use in the Life Cycle of Conventional and Low-Energy Buildings: A Review Article. Energ. Buildings 2007, 39, 249–257.
- 3 Zhang, X. F.; Li, Q. W.; Holesinger, T. G.; Arendt, P. A.; Huang, J. Y.; Clapp, T. G.; Depaula, R. F.; Liao, X. Z.; Zhao, Y. H.; Zheng, L. X.; Peterson, D. E.; Zhu, Y. T. Ultrastrong, Stiff, and Lightweight Carbon- Nanotube Fibers. Adv. Mater. 2007, 19, 4198–4201.
- 4 Wu, X. L.; Yang, M. X.; Yuan, F. P.; Wu, G. L.; Zhang, C. X.; Jiang, P.; Huang, X. X.; Zhu, Y. T. Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength with Coarse-Grain Ductility. PNAS 2015, 112, 14501–14505.
- 5 Zou, J. Y.; Zhang, X. H.; Zhao, J. N.; Lei, C. S.; Zhao, Y. H.; Zhu, Y. T.; Li, Q. W. Strengthening and Toughening Effects by Strapping Carbon Nanotube Cross-links with Polymer Molecules. Comp. Sci. Tech. 2016, 135, 123–127.
- 6 Kanoth, B. P.; Claudino, M.; Johansson, M.; Berglund, L. A.; Zhou, Q. Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol–ene Chemistry. ACS Appl. Mater. Interfaces 2015, 7, 16303–16310.
- 7 Yadla, S. V.; Sridevi, V.; Lakshmi, M. V. V. C.; Kumari, S. P. K. A Review on Corrosion of Metals and Protection. Int. J. Eng. Sci. Adv. Tech. 2014, 2, 637–644.
- 8 Cao, F. Y.; Song, G. L.; Atrens, A. Corrosion and Passivation of Magnesium Alloys. Corros. Sci. 2016, 111, 835–845.
- 9 Tesler, A. B.; Kim, P.; Kolle, S.; Howell, C.; Ahanotu, O.; Aizenberg, J. Extremely Durable Biofouling-Resistant Metallic Surfaces Based on Electrodeposited Nanoporous Tungstite Films on Steel. Nat. Commun. 2015, 6, 8649.
- 10 Tian, Y.; Su, B.; Jiang, L. Interfacial Material System Exhibiting Superwettability. Adv. Mater. 2014, 26, 6872–6897.
- 11 Ge, J.; Zhao, H. Y.; Zhu, H. W.; Huang, J.; Shi, L. A.; Yu, S. H. Advanced Sorbents for Oil-Spill Cleanup: Recent Advances and Future Perspectives. Adv. Mater. 2016, 28, 10459–10490.
- 12 Ge, J.; Ye, Y. D.; Yao, H. B.; Zhu, X.; Wang, X.; Wu, L.; Wang, J. L.; Ding, H.; Ni, Y.; He, L. H.; Yu, S. H. Pumping Through Porous Hydrophobic/ Oleophilic Materials: An Alternative Technology for Oil Spill Remediation. Angew. Chem. Int. Ed. 2014, 53, 3612–3616.
- 13 Tian, X. L.; Verho, T.; Ras, R. H. A. Moving Superhydrophobic Surfaces Toward Real-World Applications. Science 2016, 352, 142–143.
- 14 Tian, X. L.; Jokinen, V.; Li, J.; Sainio, J.; Ras, R. H. A. Unusual Dual Superlyophobic Surfaces in Oil–Water Systems: The Design Principles. Adv. Mater. 2016, 28, 10652–10658.
- 15 Wang, S. T.; Liu, K. S.; Yao, X.; Jiang, L. Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chem. Rev. 2015, 115, 8230–8293.
- 16 Liu, H.; Wang, Y. D.; Huang, J. Y.; Chen, Z.; Chen, G. Q.; Lai, Y. K. Recent Progress in Bioinspired Surfaces with Superamphiphobic Properties: Concepts, Synthesis and Applications. Adv. Funct. Mater. 2018, 28, 1707415.
- 17 Su, B.; Tian, Y.; Jiang, L. Bioinspired Interfaces with Superwettability: From Materials to Chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748.
- 18 Wang, B.; Liang, W. X.; Guo, Z. G.; Liu, W. M. Biomimetic Super-lyophobic and Super-lyophilic Materials Applied for Oil/Water Separation: A New Strategy Beyond Nature. Chem. Soc. Rev. 2015, 44, 336–361.
- 19 Tian, Y.; Jiang, L. Wetting: Intrinsically Robust Hydrophobicity. Nat. Mater. 2013, 12, 291–292.
- 20 Salajkova, M.; Berglund, L. A.; Zhou, Q. Hydrophobic Cellulose Nanocrystals Modified with Quaternary Ammonium Salts. J. Mater. Chem. 2012, 22, 19798–19805.
- 21 Zhu, W. K.; Cong, H. P.; Yao, H. B.; Mao, L. B.; Asiri, A. M.; Alamry, K. A.; Marwani, H. M.; Yu, S. H. Bio-inspired Ultrastrong, Highly Biocompatible and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films. Small 2015, 11, 4298–4302.
- 22 Yan, Y. X.; Yao, H. B.; Yu, S. H. Nacre-Like Ternary Hybrid Films with Enhanced Mechanical Properties by Interlocked Nanofiber Design. Adv. Mater. Interf. 2016, 3, 1600296.
- 23 Ramage, M. H.; Burridge, H.; Wicher, M. B.; Fereday, G.; Reynolds, T.; Shah, D. U.; Wu, G. L.; Yu, L.; Fleming, P.; Tingleye, D. D.; Allwood, J. L.; Dupree, P.; Linden, P. F.; Scherman, O. The Wood from the Trees: The Use of Timber in Construction. Renew. Sust. Energ. Rev. 2017, 68, 333–359.
- 24 Koch, G. W.; Sillett, S. C.; Jennings, G. M.; Davis, S. D. The Limits to Tree Height. Nature 2004, 428, 851–854.
- 25 Li, J. H.; Hunt, J. F.; Gong, S. Q.; Cai, Z. Y. Simplified Analytical Model and Balanced Design Approach for Light-Weight Wood-Based Structural Panel in Bending. Compos. Struct. 2016, 136, 16–24.
- 26 Chen, C.; Zhang, Y.; Li, Y. J.; Dai, J. Q.; Song, J. W.; Gong, Y. F.; Kierzewski, I.; Xie, J.; Hu, L. B. All-wood, Low Tortuosity, Aqueous, Biodegradable Supercapacitors with Ultra-High Capacitance. Energy Environ. Sci. 2017, 10, 538–545.
- 27 Lundahl, M. J.; Cunha, A. G.; Rojo, E.; Papageorgiou, A. C.; Rautkari, L.; Arboleda, J. C.; Rojas, O. J. Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels. Sci. Rep. 2016, 6, 30695.
- 28 Yano, H.; Hirose, A.; Clark, N.; Collins, P.; Yazaki, Y. Effects of High Temperature and High Pressure Alkaline Pretreatments for The Production of High Strength Resin-Impregnated Compressed Wood. Mokuzai Gakkaishi 2001, 47, 337–343.
- 29 Carsten, M.; Holger, M. Modification of Wood with Silicon Compounds. Inorganic Silicon Compounds and Sol-Gel Systems: A Review. Wood Sci. Technol. 2004, 37, 339–348.
- 30 Wei, J.; Zhang, G.; Dong, J.; Wang, H. T.; Guo, Y. L.; Zhuo, X.; Li, C. G.; Liang, H.; Gu, S. H.; Li, C. H.; Dong, X. Y.; Li, Y. F. Facile, Scalable Spray-Coating of Stable Emulsion for Transparent Self-Cleaning Surface of Cellulose-Based Materials. ACS Sustain. Chem. Eng. 2018, 6, 11335–11344.
- 31 Gao, H. L.; Zhu, Y. B.; Mao, L. B.; Wang, F. C.; Luo, X. S.; Liu, Y. Y.; Lu, Y.; Pan, Z.; Ge, J.; Xu, L.; Shen, W.; Xu, W. H.; Wang, L. J.; Wu, H. A.; Yu, S. H. Super-Elastic and Fatigue Resistant Carbon Material with Lamellar Multi-Arch Microstructure. Nat. Commun. 2016, 7, 12920.
- 32 Rojo, E.; Peresin, M. S.; Sampson, W. W.; Hoeger, I. C.; Vartiainen, J.; Laine, J.; Rojas, O. J. Comprehensive Elucidation of the Effect of Residual Lignin on the Physical, Barrier, Mechanical and Surface Properties of Nanocellulose Films. Green Chem. 2015, 17, 1853–1866.
- 33 Song, J. W.; Chen, C. J; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U.; Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N.; Yao, Y. G.; Gong, A.; Leiste, U. H.; Bruck, H. A.; Zhu, J. Y.; Vellore, A.; Li, H.; Minus, M. L.; Jia, Z.; Martini, A.; Li, T.; Hu, L. B. Processing Bulk Natural Wood into A High-Performance Structural Material. Nature 2018, 554, 224–228.
- 34 Mao, L. B.; Gao, H. L.; Yao, H. B.; Cölfen, L.; Liu, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y.; Yu, S. H. Synthetic Nacre by Predesigned Matrix-Directed Mineralization. Science 2016, 354, 107–110.
- 35 Morits, M.; Verho, T.; Sorvari, J.; Liljeström, V.; Kostiainen, M. A.; Gröschel, A. H.; Ikkala, O. Toughness and Fracture Properties in Nacre-Mimetic Clay/Polymer Nanocomposites. Adv. Funct. Mater. 2017, 27, 1605378.
- 36
McKee, J. R.; Huokuna, J.; Martikainen, L.; Karesoja, M.; Nykänen, A.; Kontturi, E.; Tenhu, H.; Ruokolainen, J.; Ikkala, O. Molecular Engineering of Fracture Energy Dissipating Sacrificial Bonds Into Cellulose Nanocrystal Nanocomposites. Angew. Chem. Int. Ed. 2014, 126, 5149–5153.
10.1002/ange.201401072 Google Scholar
- 37 Ramage, M. H.; Burridge, H.; Wicher, M. B.; Fereday, G.; Reynolds, T.; Shah, D. U.; Wu, G. l.; Yu, L.; Fleming, P.; Tingleye, D. D.; Allwood, J.; Dupree, P.; Linden, P. F.; Scherman, O. The Wood from the Trees: The Use of Timber in Construction. Renew. Sust. Energ. Rev. 2017, 68, 333–359.
- 38 Verho, T.; Karesoja, M.; Das, P.; Martikainen, L.; Lund, R.; Alegría, A.; Walther, A.; Ikkala, O. Hydration and Dynamic State of Nanoconfined Polymer Layers Govern Toughness in Nacre-mimetic Nanocomposites. Adv. Mater. 2013, 25, 5055–5059.
- 39 Xu, Z.; Sun, H. Y.; Zhao, X. L.; Gao, C. Ultrastrong Fibers Assembled from Giant Graphene Oxide Sheets. Adv. Mater. 2013, 25, 188–193.
- 40 Fleck, C.; Schüler, P.; Meinel, D.; Zaslansky, P.; Currey, J. D. Microstructural Features Influencing Failure in Macadamia Nuts. Bioinspired, Biomimetic Nanobiomater. 2012, 1, 67–75.
- 41
Seidel, R.; Thielen, M.; Schmitt, C.; Bührig-Polaczek, A.; Fleck, C.; Speck, T. Fruit Walls and Nut Shells as an Inspiration for the Design of Bio-Inspired Impact-Resistant Hierarchically Structured Materials. Int. J. Design Nat. Ecodyn. 2013, 8, 172–179.
10.2495/DNE-V8-N2-172-179 Google Scholar
- 42 Timonen, J. V. I.; Latikka, M.; Ikkala, O.; Ras, R. H. A. Free-Decay and Resonant Methods for Investigating the Fundamental Limit of Superhydrophobicity. Nat. Commun. 2013, 4, 2398.
- 43 Lu, Y.; Sathasivam, S.; Song, J. L.; Crick, C. R.; Carmalt, C. J.; Parkin, I. P. Robust Self-Cleaning Surfaces That Function When Exposed to Either Air or Oil. Science 2015, 347, 1132–1135.
- 44 Lee, C. Y.; Jeong, J.; Han, J.; Lee, S. J.; Lee, S.; Lee, Y. K. Coupled Strengthening in a Medium Manganese Lightweight Steel with An Inhomogeneously Grained Structure of Austenite. Acta Mater. 2015, 84, 1–8.
- 45 Kulekci, M. K. Magnesium and Its Alloys Applications in Automotive Industry. Int. J. Adv. Manuf. Tech. 2008, 39, 851–865.
- 46 Tolga, D.; Costas, S. Recent Developments in Advanced Aircraft Aluminium Alloys. Mater. Design 2014, 56, 862–871.
- 47 Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J. A radiative cooling structural material. Science 2019, 364, 760–763.
- 48 Gan, W.; Chen, C.; Wang, Z.; Song, J.; Kuang, Y.; He, S.; Mi, R.; Sunderland, P. B.; Hu, L., Dense, Self-Formed Char Layer Enables a Fire-Retardant Wood Structural Material. Adv. Funct. Mater.2019, 29, 1807444.
- 49 Gan, W.; Chen, C.; Wang, Z.; Pei, Y.; Ping, W.; Xiao, S.; Dai, J.; Yao, Y.; He, S.; Zhao, B., Fire-Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating. Adv. Funct. Mater. 2020, 1909196.