Palladium-Catalyzed Formal [4+2] Cycloaddition of Benzoic and Acrylic Acids with 1,3-Dienes via C—H Bond Activation: Efficient Access to 3,4-Dihydroisocoumarin and 5,6-Dihydrocoumalins
Youwen Sun
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Guozhu Zhang
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
E-mail: [email protected]Search for more papers by this authorYouwen Sun
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Guozhu Zhang
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
E-mail: [email protected]Search for more papers by this authorAbstract
We report a palladium-catalyzed formal intermolecular [4+2] cycloaddition of benzoic and acrylic acids with 1,3-dienes including the stock chemicals 1,3-butadiene and isoprene leading to synthetically useful 3,4-dihydroisocoumarins and 5,6-dihydrocoumalins. Stepwise C—H bond cleavage and annulation are likely involved in the reaction pathway. The synthetic potential of the methodology was demonstrated by two short derivatizations and total synthesis of natural product Clausamine B.
Supporting Information
Filename | Description |
---|---|
cjoc201800149-sup-0001-SuppInfo.pdfPDF document, 5.2 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1(a) Sondheimer, E. J. Am. Chem. Soc. 1957, 79, 5036;
(b) Hamada, Y.; Hara, O.; Kawai, A.; Kohno, Y.; Shioiri, T. Tetrahedron 1991, 47, 8635;
(c) Medrano, A. P.; Grieco, P. A. J. Am. Chem. Soc. 1991, 113, 1057;
(d) Ward, R. A.; Procter, G. Tetrahedron 1995, 51, 12301;
(e) Chihiro, I.; Shinya, K.; Masataka, I.; Nijsiri, R.; Teruo, M.; Masato, O.; Yutaka, K.; Harukuni, T.; Hoyoku, N.; Hiroshi, F. J. Nat. Prod. 2000, 63, 125;
(f) Zidorn, C.; Lohwasser, U.; Pschorr, S.; Salvenmoser, D.; Ongania, K. H.; Ellmerer, E. P.; Börner, A.; Stuppner, H. Phytochemistry 2005, 66, 1691;
(g) Pu, J.-X.; Li, R.-T.; Xiao, W.-L.; Gong, N.-B.; Huang, S.-X.; Lu, Y.; Zheng, Q.-T.; Lou, L.-G.; Sun, H.-D. Tetrahedron 2006, 62, 6073;
(h) Badaruddin, A. H.; Muhamma, A.; Hasan, R. N.; Aslam, M. M.; Shahid, M. Chin. J. Chem. 2007, 25, 102;
(i) Zhang, L.-H.; Li, S.-G.; Wu, H.-H.; Chen, G.; Li, L.; Bai, J.; Hua, H.-M.; Wang, H.-F.; Pei, Y.-H. Phytochem. Lett. 2017, 20, 200;
(j) Gaikwad, R. D.; Rane, M. D.; Bhat, S. V. Tetrahedron: Asymmetry 2017, 28, 181.
10.1016/j.tetasy.2016.12.006 Google Scholar
- 2(a) Larock, R. C.; Varaprath, S.; Lau, H. H.; Fellows, C. A. J. Am. Chem. Soc. 1984, 106, 5274; (b) Bestmann, H. J.; Kern, F.; Schafer, D.; Witschel, M. C. Angrw. Chem. Int. Ed. 1992, 31, 795; (c) Lebold, T. P.; Kerr, M. A. Org. Lett. 2008, 10, 997; (d) Chen, J.; Zhou, L.; Tan, C. K.; Yeung, Y.-Y. J. Org. Chem. 2012, 77, 999; (e) Turytsya, V. V.; Ostapiuk, Y. V.; Matiychuk, V. V.; Obushak, M. D. J. Heterocyclic Chem. 2014, 58, 1898.
- 3(a) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 6097; (b) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q.; Science 2010, 327, 315; (c) Satoh, T.; Miura, M. Synthesis 2010, 20, 3395; (d) Li, H.; Shi, Z.-J. Prog. Chem. 2010, 22, 1414; (e) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908; (f) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
- 4(a) Miura, M.; Tsuda, T.; Satoh, T.; Art, S. P.; Nomura, M. J. Org. Chem. 1998, 63, 5211; (b) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407; (c) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362; (d) Satoh, T.; Ueura, K.; Miura, M. Pure Appl. Chem. 2008, 80, 1127; (e) Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 3478; (f) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 6295.
- 5(a) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153; (b) Bechtoldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß, C.; Ackermann, L. Angew. Chem. Int. Ed. 2016, 55, 264; (c) Bechtoldt, A.; Baumert, M.; Vaccaro, L.; Ackermann, L. Green Chem. 2018, 20, 398; (d) Qiu, Y.-A.; Kong, W.-J.; Struwe, J.; Sauermann, N.; Rogge, T.; Scheremetjew, A.; Ackermann, L.; Angew. Chem. Int. Ed. 2018, 57, DOI: https://doi.org/10.1002/anie. 201803342.
- 6Nandi, D.; Ghosh, D.; Chen, S.-J.; Kuo, B.-C.; Wang, N.-M.; Lee, H.-M. J. Org. Chem. 2013, 78, 3445.
- 7Liu, Y.; Yang, Y.-D.; Shi, Y.; Wang, X.-J.; Zhang, L.-Q.; Cheng, Y.-Y.; You, J.-S. Organometallics 2016, 35, 1350.
- 8Jiang, Q.-D.; Zhu, C.-L.; Zhao, H.-Q.; Su, W.-P. Chem. Asian J. 2016, 11, 356.
- 9(a) Houlden, C. E.; Bailey, C. D.; Ford, J. G.; Gagné, M. R.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2008, 130, 10066; (b) Zhao, D.; Lied, F.; Glorius, F. Chem. Sci. 2014, 5, 2869; (c) Nishimura, T.; Ebe, Y.; Hayashi, T. J. Am. Chem. Soc. 2013, 135, 2092; (d) Nishimura, T.; Nagamoto, M.; Ebe, Y.; Hayashi, T. Chem. Sci. 2013, 4, 4499; (e) Khan, I.; Chidipudi, S. R.; Lam, H. W. Chem. Commun. 2015, 51, 2613; (f) Chen, S.-S.; Wu, M.-S.; Han, Z.-Y. Angew. Chem. Int. Ed. 2017, 56, 6641; (g) Bai, L.; Wang, Y.; Ge, Y.-C.; Liu, J.-J.; Luan, X.-J. Org. Lett. 2017, 19, 1734.
- 10Nguyen, T. T.; Grigorjeva, L.; Daugulis, O. Angew. Chem. Int. Ed. 2018, 57, 1688.
- 11White, W. C. Chem.-Biol. Interact. 2007, 166, 10.
- 12(a) Sun, X.; Izumi, K. J.; Hu, C.-Q.; Lin, G.-Q. Chin. J. Chem. 2006, 24, 430; (b) Eschenbrenner-Lux, V.; Kumar, K.; Waldmann, H. Angew. Chem. Int. Ed. 2014, 53, 11146; (c) Backvall J. E. In Metal-catalyzed Cross-coupling Reactions and More, Wiley-VCH, Weinheim, 2014, p. 875; (d) Cho, H. Y.; Morken, J. P. Chem. Soc. Rev. 2014, 43, 4368; (e) Zhu, Y.-G.; Cornwall, R. G.; Du, H.-F.; Zhao, B.-G.; Shi, Y.-A. Acc. Chem. Res. 2014, 47, 3665; (f) Wu, Z.-X.; Zhang, W.-B. Chin. J. Org. Chem. 2017, 37, 2250; (g) Xiong, Y.; Sun, Y.-W.; Zhang, G.-Z. Tetrahedron Lett. 2018, 59, 347.
- 13Xiong, Y.; Zhang, G.-Z. J. Am. Chem. Soc. 2018, 140, 2735.
- 14(a) Ogawa, H.; Fujinami, H.; Taya, K.; Terata, S. J. Chem. Soc., Chem. Commun. 1981, 24, 1274;
10.1039/C39810001274 Google Scholar(b) Ogawa, H.; Fujinami, H.; Taya, K.; Terata, S. Bull. Chem. Soc. Jpn. 1984, 57, 1908. PdSO4 probably causes less side reactions of 1,3-dienes.
- 15Tomooka, K.; Matsuzawa, K.; Suzuki, K.; Tsuchihashi, G.-I. Tetrahedron Lett. 1987, 28, 6339.
- 16Kawashima, M.; Sato, T.; Fujisawa, T. Bull. Chem. Soc. Jpn. 1988, 61, 3255.
- 17(a) Campeau, L.-C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581; (b) Chen, W.-Q.; Yang, Q.; Zhou, T.; Tian, Q.-S.; Zhang, G.-Z. Org. Lett. 2015, 17, 5236.
- 18Humne, V. T.; Naykode, M. S.; Ghom, M. H.; Lokhande, P. D. Tetrahedron Lett. 2016, 57, 688.