Effect of Different Ionic Liquids on 5-Hydroxymethylfurfural Preparation from Glucose in DMA over AlCl3: Experimental and Theoretical Study
Yan Yang
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Search for more papers by this authorWentao Liu
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Search for more papers by this authorNingning Wang
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Search for more papers by this authorCorresponding Author
Haijun Wang
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, ChinaSearch for more papers by this authorWei Li
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Search for more papers by this authorZhanxin Song
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Search for more papers by this authorYan Yang
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Search for more papers by this authorWentao Liu
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Search for more papers by this authorNingning Wang
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Search for more papers by this authorCorresponding Author
Haijun Wang
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, ChinaSearch for more papers by this authorWei Li
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Search for more papers by this authorZhanxin Song
Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Search for more papers by this authorAbstract
In this work, effect of different ionic liquids (ILs) on 5-hydroxymethylfurfural (HMF) preparation from glucose in N,N-dimethylacetamide (DMA) over AlCl3 was revealed by a combined experimental and computational study. ILs used as cocatalysts in this work included N-methyl-2-pyrrolidone hydrogen sulfate ([NMP]HSO4), N-methyl-2-pyrrolidone methyl sulfate ([NMP]CH3SO3), N-methyl-2-pyrrolidone chlorine ([NMP]Cl) and N-methyl-2-pyrrolidone bromide ([NMP]Br) which were endowed with the same cation but different anions. According to the conclusion that fructose was intermediate product from glucose to HMF, we found fructose was transformed to more by-products by [NMP]HSO4, making HMF yield decline significantly when glucose was treated as substrate. Neither glucose nor fructose could be converted by [NMP]CH3SO3 efficiently, leading to its no influence on glucose conversion to HMF. [NMP]Br had a higher selectivity for HMF from fructose than [NMP]Cl and AlCl3. Besides, Al3+ preferred to combine with Br−, slightly decreasing both the overall free energy barrier for glucose isomerization and activation barrier for H-shift at 393.15 K. So a high HMF yield of 57% was obtained from glucose catalyzed by AlCl3 together with [NMP]Br under mild conditions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201500030_sm_suppl.pdf397.7 KB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J., Jr.; Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplinski, T.. Science, 2006, 311, 484.
- 2 Li, J.; Huang, Y. B.; Fu, Y.. Acta Chim. Sinica, 2014, 72, 1223.
- 3 Wang, H. Y.; Zhang, C. B.; He, H.; Wang, L.. Acta Phys.-Chim. Sin., 2010, 26, 1873 (in Chinese).
- 4 Sheldon, R. A.. Chem. Commun., 2008, 3352.
- 5 Bicker, M.; Hirth, J.; Vogel, H.. Green Chem., 2003, 5, 280.
- 6 Roman-Leshkov, Y.; Chheda, J. N.; Dumesic, J. A.. Science, 2006, 312, 1933.
- 7 Song, J.; Zhang, B.; Shi, J.; Ma, J.; Yang, G.; Han, B.. Chin. J. Chem., 2012, 30, 2079.
- 8 Song, C.; Liu, H.; Li, Y.; Ge, S.; Wang, H.; Zhu, W.; Chang, Y.; Han, C.; Li, H.. Chin. J. Chem., 2014, 32, 434.
- 9 Du, F.; Qi, X. H.; Xu, Y. Z.; Zhuang, Y. Y.. Chem. J. Chin. Univ., 2010, 31, 548 (in Chinese).
- 10 Zhao, Y.; Li, D.; Lu, W. J.; Wang, H. T.; Pu, X. S.. Acta Chim. Sinica, 2008, 66, 2295 (in Chinese).
- 11 Zhu, G. Y.; Ma, Y. H.; Zhu, X.. Chin. J. Inorg. Chem., 2010, 30, 142 (in Chinese).
- 12 Hu, S.; Zhang, Z.; Song, J.; Zhou, Y.; Han, B.. Green Chem., 2009, 11, 1746.
- 13 Qu, Y.; Huang, C.; Song, Y.; Zhang, J.; Chen, B.. Bioresour. Technol., 2012, 121, 462.
- 14 Tao, F. R.; Zhuang, C.; Cui, Y. Z.; Xu, J.. Chin. Chem. Lett., 2014, 25, 757.
- 15 Saravanamurugan, S.; Paniagua, M.; Melero, J. A.; Riisager, A.. J. Am. Chem. Soc., 2013, 135, 5246.
- 16 He, J.; Zhang, Y.; Chen, E. Y.. ChemSusChem, 2013, 6, 61.
- 17 Wang, J.; Ren, J.; Liu, X.; Xi, J.; Xia, Q.; Zu, Y.; Lu, G.; Wang, Y.. Green Chem., 2012, 14, 2506.
- 18 Nakajima, K.; Noma, R.; Kitano, M.; Hara, M. J.. Mol. Catal. A: Chem., 2014, 388–389, 100.
- 19 Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C.. Science, 2007, 316, 1597.
- 20 Pidko, E. A.; Degirmenci, V.; van Santen, R. A.; Hensen, E. J. M.. Angew. Chem., Int. Ed., 2010, 49, 2530.
- 21 Pidko, E. A.; Degirmenci, V.; van Santen, R. A.; Hensen, E.. J. Inorg. Chem., 2010, 49, 10081.
- 22 Zhang, Y.; Pidko, E. A.; Hensen, E. J.. Chemistry, 2011, 17, 5281.
- 23 Pidko, E. A.; Degirmenci, V.; Hensen, E. J. M.. ChemCatChem, 2012, 4, 1263.
- 24 Guan, J.; Cao, Q.; Guo, X.; Mu, X.. Comput. Theor. Chem., 2011, 963, 453.
- 25 Yang, Y.; Hu, C.-A.; Abu-Omar, M. M.. Green Chem., 2012, 14, 509.
- 26 Chen, Z.; Bi, J.; Su, W.. Chin. J. Chem., 2013, 31, 507.
- 27 Liu, C. H.; He, Q. H.; Zhang, Z.; Su, Y. Y.; Xu, R. F.; Hu, B.. Chin. J. Chem., 2014, 32, 410.
- 28 Li, Y. P.; Qi, L.; Shen, Y.; Zhang, H. Z.; Ma, H. M.. Chin. J. Chem., 2014, 32, 619.
- 29 Wang, F. R.; Tang, S. S.; Ma, H.; Wang, L. F.; Li, X. H.; Yin, B. L.. Chin. J. Chem., 2014, 32, 1225.
- 30 Liu, J. F.; Cao, Y.; Yang, M. H.; Wang, X. J.; Li, H. Q.; Xing, J. M.. Chin. Chem. Lett., 2014, 25, 1485.
- 31 Glukhovtsev, M. N.; Bach, R. D.; Nagel, C. J. J.. Phys. Chem. A, 1997, 101, 316.
- 32 Adamo, C.; Barone, V.. Chem. Phys. Lett., 1997, 274, 242.
- 33 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Cli?ord, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M. E.; Replogle, S.; Pople, J. A., Gaussian 03, revision, Gaussian, Inc., Wallingford, CT, 2003.
- 34 Meng, Q.; Wang, F.; Li, M.. J. Mol. Model., 2012, 18, 4955.
- 35 Binder, J. B.; Raines, R. T.. J. Am. Chem. Soc., 2009, 131, 1979.
- 36 Choudhary, V.; Mushrif, S. H.; Ho, C.; Anderko, A.; Nikolakis, V.; Marinkovic, N. S.; Frenkel, A. I.; Sandler, S. I.; Vlachos, D. G.. J. Am. Chem. Soc., 2013, 135, 3997.
- 37 Chen, T. M.; Lin, L.. Chin. J. Chem., 2010, 28, 1773.
- 38 Yang, G.; Pidko, E. A.; Hensen, E. J.. ChemSusChem, 2013, 6, 1688.
- 39 Ren, Q.; Huang, Y.; Ma, H.; Wang, F.; Gao, J.; Xu, J.. Bioresources, 2013, 8, 1563.