Two-dimensional (2D) Supramolecular Coordination at Liquid/Solid Interfaces Studied by Scanning Tunneling Microscopy
Jing Xu
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
Search for more papers by this authorCorresponding Author
Qingdao Zeng
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China, Tel.: 0086-010-82545548; Fax: 0086-010-62656765Search for more papers by this authorJing Xu
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
Search for more papers by this authorCorresponding Author
Qingdao Zeng
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China, Tel.: 0086-010-82545548; Fax: 0086-010-62656765Search for more papers by this authorAbstract
In this review, supramolecular coordination processes on two-dimensional (2D) surfaces or interfaces observed by scanning tunneling microscopy (STM) are discussed. Four parts are mainly involved, which include (1) recognition of Fe3+ through functional molecular networks, (2) K+-induced switching of valinomycin, (3) supramolecular coordination happened in a nano-reactor, (4) reversible 2D supramolecular spring driven by coordination. The direct insight of the coordination phenomena provided by STM supplements our knowledge of its mechanism. Since different building blocks can be connected into a whole part through coordination, the understanding of its mechanism will be beneficial to the future design of molecular devices.
REFERENCES
- 1 De Feyter, S.; De Schryver, F. C.. Chem. Soc. Rev., 2003, 32, 139.
- 2 Lehn, J.-M.. Angew. Chem., Int. Ed. Eng., 1988, 27, 89.
- 3 Barth, J. V.; Costantini, G.; Kern, K.. Nature, 2005, 437, 671.
- 4 Yang, Y.; Wang, C.. Chem. Soc. Rev., 2009, 38, 2576.
- 5 Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S.. Nature, 2001, 413, 619.
- 6 Furukawa, S.; Tahara, K.; De Schryver, F. C.; Van der Auweraer, M.; Tobe, Y.; De Feyter, S.. Angew. Chem., Int. Ed. Eng., 2007, 46, 2831.
- 7 Guo, Y.; Wang, C.; Hou, J.; Yang, A.; Zhang, X.; Wang, Y.; Zhang, M.; Yang, Y.; Wang, C.. Chin. J. Chem., 2012, 30, 1987.
- 8 Rahe, P.; Nimmrich, M.; Kühnle, A.. Small, 2012, 8, 2969.
- 9 Viciano-Chumillas, M.; Hieulle, J.; Mallah, T.; Silly, F.. J. Phys. Chem. C, 2012, 116, 23404.
- 10 Messina, P.; Dmitriev, A.; Lin, N.; Spillmann, H.; Abel, M.; Barth, J. V.; Kern, K.. J. Am. Chem. Soc., 2002, 124, 14000.
- 11 Gambardella, P.; Stepanow, S.; Dmitriev, A.; Honolka, J.; de Groot, F. M. F.; Lingenfelder, M.; Gupta, S. S.; Sarma, D. D.; Bencok, P.; Stanescu, S.; Clair, S.; Pons, S.; Lin, N.; Seitsonen, A. P.; Brune, H.; Barth, J. V.; Kern, K.. Nat. Mater., 2009, 8, 189.
- 12 Lu, J.; Lei, S.; Zeng, Q.; Kang, S.; Wang, C.; Wan, L.; Bai, C.. J. Phys. Chem. B, 2004, 108, 5161.
- 13 Stepanow, S.; Lingenfelder, M.; Dmitriev, A.; Spillmann, H.; Delvigne, E.; Lin, N.; Deng, X.; Cai, C.; Barth, J. V.; Kern, K.. Nat. Mater., 2004, 3, 229.
- 14 Henningsen, N.; Rurali, R.; Limbach, C.; Drost, R.; Pascual, J. I.; Franke, K. J.. J. Phys. Chem. Lett., 2010, 2, 55.
- 15 Whiteoak, C. J.; Salassa, G.; Kleij, A. W.. Chem. Soc. Rev., 2012, 41, 622.
- 16 Li, Y.; Xiao, J.; Shubina, T. E.; Chen, M.; Shi, Z.; Schmid, M.; Steinrück, H.-P.; Gottfried, J. M.; Lin, N.. J. Am. Chem. Soc., 2012, 134, 6401.
- 17 Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E.. Phys. Rev. Lett., 1982, 49, 57.
- 18 Magonov, S. N.; Whangbo, M.-H.. Adv. Mater., 1994, 6, 355.
- 19 De Feyter, S.; Gesquière, A.; Abdel-Mottaleb, M. M.; Grim, P. C. M.; De Schryver, F. C.; Meiners, C.; Sieffert, M.; Valiyaveettil, S.; Müllen, K.. Acc. Chem. Res., 2000, 33, 520.
- 20 De Feyter, S.; De Schryver, F. C.. J. Phys. Chem. B, 2005, 109, 4290.
- 21 Xu, J.; Zeng, Q.. Curr. Org. Chem., 2014, 18, 407.
- 22 Li, M.; Deng, K.; Lei, S.; Yang, Y.; Wang, T.; Shen, Y.; Wang, C.; Zeng, Q.; Wang, C.. Angew. Chem., Int. Ed., 2008, 47, 6717.
- 23 Shen, Y.; Guan, L.; Zhu, X.; Zeng, Q.; Wang, C.. J. Am. Chem. Soc., 2009, 131, 6174.
- 24 Zhang, X.; Xu, S.; Li, M.; Shen, Y.; Wei, Z.; Wang, S.; Zeng, Q.; Wang, C.. J. Phys. Chem. C, 2012, 116, 8950.
- 25 Liu, X.; Guan, C.; Ding, S.; Wang, W.; Yan, H.; Wang, D.; Wan, L.. J. Am. Chem. Soc., 2013, 135, 10470.
- 26 Vijayaraghavan, S.; Ecija, D.; Auwaerter, W.; Joshi, S.; Seufert, K.; Drach, M.; Nieckarz, D.; Szabelski, P.; Aurisicchio, C.; Bonifazi, D.; Barth, J. V.. Chem.-Eur. J., 2013, 19, 14143.
- 27 Xu, W.; Wang, J.; Yu, M.; Lagsgaard, E.; Stensgaard, I.; Linderoth, T. R.; Hammer, B.; Wang, C.; Besenbacher, F.. J. Am. Chem. Soc., 2010, 132, 15927.
- 28 De Feyter, S.; Abdel-Mottaleb, M. M. S.; Schuurmans, N.; Verkuijl, B. J. V.; van Esch, J. H.; Feringa, B. L.; De Schryver, F. C.. Chem.-Eur. J., 2004, 10, 1124.
- 29 Li, Y.; Zhao, K.; Yang, Y.; Deng, K.; Zeng, Q.; Wang, C.. Nanoscale, 2012, 4, 148.
- 30 Wang, Y.; Niu, L.; Li, Y.; Mao, X.; Yang, Y.; Wang, C.. Langmuir, 2010, 26, 16305.
- 31 Li, Y.; Liu, C.; Xie, Y.; Li, X.; Fan, X.; Yuan, L.; Zeng, Q.. Chem. Commun., 2013, 49, 9021.
- 32 Zhang, X.; Shen, Y.; Wang, S.; Guo, Y.; Deng, K.; Wang, C.; Zeng, Q.. Sci. Reports, 2012, 2.
- 33 Mahadevan, L.; Matsudaira, P.. Science, 2000, 288, 95.
- 34 Kim, H.-J.; Lee, E.; Park, H.-S.; Lee, M.. J. Am. Chem. Soc., 2007, 129, 10994.
- 35 Nelson, W. A.; Bj?rnstad, O. N.; Yamanaka, T.. Science, 2013, 341, 796.
- 36 Zhang, X.; Zou, J.; Tamhane, K.; Kobzeff, F. F.; Fang, J.. Small, 2010, 6, 217.
- 37 Luo, D.; Zhang, X.; Shen, Y.; Xu, J.; Shu, L.; Zeng, Q.; Wang, C.. Chem. Commun., 2014, 66, 9369.